
30 PROGRAMS
FOR THE
SINCLAIR

30 PROGRAMS
FOR THE
SINCLAIR

1K

-J

NOT ONLY

OOO333333333
33 3333 00 00

33 00 00
333 00 00

33 333 00 00
33333333 000

PROGRAMS

FOR THE

SINCLAIR Z X - 81

MELBOURNE HOUSE PUBLISHERS

Published by
Melbourne House (Publishers) Ltd
Glebe Cottage, Station Road
Cheddington,
Bedfordshire

Leighton Buzzard
LU7 7NA

All programs
Programs not

in this book are copyright 1981
otherwise indicated are

Copyright (c) 1981 by Beam Software

ISBN 0 86161 102 0

All rights reserved. This book is copyright. No
part of this book may be copied or stored by any
means whatsoever whether mechanical or
electronic, except for private or study use as
defined in the Copyright Act. All enquiries
should be addressed to the publishers.

Printed in Hong Kong.

PUBLISHER'S NOTE

We at Melbourne House are very excited to be
involved with the publication of this book,
making available as it does not only 30
interesting and varied programs for the SINCLAIR
ZX 81 - undoubtedly the most affordable and most
popular small computer in the world - but also
giving the user an insight into the way the
Sinclair ZX 81 can be used and filled with
programming tips.

We are also publishers of other titles for the
Sinclair computer, as a glance at the back pages
of this book will show, ranging from titles for
the complete beginner to titles of interest to
more experienced users.

We have a commitment to providing literature
and software for the Sinclair ZX 81, and as you
will note by leafing through this book, many of
the programs we publish are the result of
programs that were submitted to us by ZX 81
owners.

So if you have a program or article you think
would be of interest to other ZX 81 users, please
write to us. We will give you a prompt assessment
and reply whether the material is something we
could use.

In the meantime, happy computing.

ALFRED MILGROM

PUBLISHER

INDEX

INTRODUCING THE ZX 81 : 1K

Patterns 8
Leapfrogs 10
Noughts and Crosses 14
Pinch 19
Battleships 24

GAMBLING GAMES :

Craps 28
Fruit Machine 30
Roulette 32
Horse Races 35
Blackjack 37

ZX 81 SHOWS THE WAY :

Day of the Week 44
Simple Simon 46
Kings and Queens 50
Hangman 53
Quadratic Equations 56
Simultaneous Equations 58

ARCADE GAMES :

Star Wars 62
Lunar Lander 64
Asteroids in Space 68
Bombs Away 70
U.F.O. 73
Breakout 75
Space Taxi 78

ZX 81 UTILITY PROGRAMS :

Bubble Sort 82
Line Renumbering 85
Machine Code Editor 89

CHALLENGING THE ZX 81 : IK

Mastermind 98
Doctor ZX 81 100
Caves and Pitfalls 107
Draughts 112

INTRODUCING THE ZX 81 : IK

* PATTERNS

* LEAPFROGS

* NOUGHTS AND CROSSES

* PINCH

* BATTLESHIPS

RANDOM PATTERNS

(c) by Neil Streeter

This program will generate thousands of
interesting random patterns, stopping only when
you type (BREAK).

PROGRAM STRUCTURE

The program works by randomly selecting graphics
characters, and putting them in the array A$. The
codes for these characters are 128 to 138. This
program as well as being very pretty and quite
relaxing to watch is also a good demonstration of
the possible uses of the RANDOM function.

There are more graphics characters with codes 1
to 10, so by changing line 120, you can vary the
patterns formed.

120 LET A$(X)= CHR$(INT(RND*9 +1))

The characters are printed repeatedly to form the
patterns.

To give you time to see the pattern a PAUSE
statement has been included after printing the
pattern. The effect of this is to stop any
computations and hold the display for the number
of frames specified. Line 190 is only needed if
you are running the program in fast mode.

RANDOM PATTERNS:

100 DIM A$(7)
110 FOR X=1 TO 7

8

120
130
140
150
160
170
180
190
200
210

LET A$(X)=CHR$(INT(RND*10 + 128))
NEXT X
FOR X=1 TO 77
PRINT A$;
NEXT X
PRINT A$(TO 5)
PAUSE 260
POKE 16437,255
CLS
GOTO 100

9

LEAPFROGS

The game of leapfrogs is a nice simple one:

You start off with two opposing sets of frogs,
and each frog can only move to an adjacent space
or leap over one frog.

XXXX-0000
1 2 3 4 5 6 7 8 9

So, as a first move, for example, the frog at
position 4 can move to 5, or the frog at 6 can
move to 5, or the frog at 3 can leap over frog 4
to land at 5, or the frog at 7 can leap over the
frog at 6 to land at 5.

The object of the game is to try to get all the
frogs on the left to the right, and vice versa in
the least possible amount of moves. It's great
fun!

STRUCTURE OF THE PROGRAM:

The first part of any program is to initialise
whatever variables may be needed. In this case,
we want to define the initial position of the
frogs and set the number of moves taken so far to
zero.

An overview of the program reveals the
following structure:

INITIALISE VARIABLES
PRINT PRINT POSITION OF FROGS

CHECK IF FINISHED
IF YES, THEN GO TO FINISH

10

INPUT ENTER PLAYER'S MOVE
CHECK IF MOVE IS ALLOWED

IF NOT, GO TO INPUT AGAIN
ADD ONE TO NUMBER OF MOVES
MAKE THE MOVE AND GO TO PRINT

FINISH CONGRATULATE PLAYER
ASK IF PLAYER WANT TO PLAY AGAIN

IF YES, THEN RUN AGAIN

This simple "top-down" approach gives us an
overview of the program and lets us understnad
the program should we wish to make any changes at
a later stage.

STRUCTURE OF THE VARIABLES:

For this program we shall be using "string
variables" to define the position of the frogs. A
string variable is easy to manipulate in this
context and makes printing very fast.

We define "0$" as the original position of the
frogs, and "P$" as the present position of the
frogs. We can use the same variables to check if
we are finished and this is done in line 150.

We use the variables "T" and "F" to represent the
position "to" and "from" that the frog is moving.
Because a frog can only move into an empty
position we can check this easily, as in line
200.

The rest of the program is very straightforward
with "C" the count of moves taken.

LEAPFROGS PROGRAM

100 let 0$ = "■ A ■ A ■ A ■ A AA mmaraj"A A A A A A A A A
These characters are obtained

11

by using upper case "SPACE" and
"P" while in GRAPHICS mode.

110 LET P$ = 0$
120 LET C = 0
130 CLS
140 PRINT P$,,,"1A 2 3 ^4a 5a 6 8 A

9", , ,"ENTER MOVE"
150 IF P$(1 TO 7) = 0$(11 TO 17) AND P$(ll .TO
17) = 0$(l TO 7) THEN GO TO 250
160 INPUT A$
170 IF A$ = "" THEN STOP
180 LET F = 2*(CODE A$ (1) - 28) - 1
190 LET T = 2*(CODE A$ (2) - 28) - 1
200 IF P$(T) <> "2S" OR ABS (T - F) > 4 THEN

GOTO 160
210 LET C = C + 1
220 LET P$(T) = P$(F)
230 LET P$(F) = ""
240 GOTO 130
250 PRINT "YOU DID IT INA ";CMOVES"

,, /'ANOTHER GO?"
260 INPUT A$
270 IF CODE A$ = 62 THEN RUN

NOTE:

The symbol " " is used to indicate the need for
a space at that position. This symbol is not used
everywhere a space is required, but only in those
positions where the numbers of spaces is critical
to the running of the program or to legibility of
the display, as in lines 100 and 250 in the above
program.

RUNNING THE PROGRAM:

The program expects a 2-digit input to define to
move "from" and the move "to".

It will therefore only accept as a valid first

12

entry one of the the following
35 45 65

Happy leapfrogging!

moves:
75

13

NOUGHTS AND CROSSES

We have all played Noughts and Crosses in our
time, and this time the challenge is to beat the
computer.

The computer in this program is a little greedy
in that it refuses to let you start, but then
again, it's not like your next-door neighbour. It
is always available for a game!

The screen display is as follows:

1 2 3

8 X 4

7 6 5

You enter your move by choosing the number where
you wish to move to.

The programmer is so confident of his program
that you will notice there is only provision for
the computer to win or to concede a draw!

NOUGHTS AND CROSSES:

(graphics 6,Q,6,6,Q,66)

50 PAUSE S * Z
60 CLS
70 LET A$ = "1 |6 2 |a 38 la X la 47

6 h 5" (graphics 8 followed
by space)

80 FOR I = X TO X + Y
90 PRINT A$ (TO B-X)

100 IF I =(Y THEN PRINT » ’ » •

110 LET A$ = A$ (B TO)
120 NEXT I
130 FOR T = X TO Z
140 PRINT AT B,X ; "YOUR TURN"
150 LET V = 52
160 INPUT R
170 GOSUB 420
180 PRINT AT B,X ; "MY TURN &
190 IF T)■ X THEN GOTO 230
200 LET E = R = Y * INT (R/Y)
210 LET P = R
220 LET A = P - P
230 LET V = 61
240 LET A = A + X
250 IF T = X OR P = R + Z OR P =

THEN GOTO 300
260 LET P = P + Z
270 GOSUB S Z
280 PRINT "I WON”
290 GOTO X
300 IF A = X + Y AND E THEN LET A = B - X
310 IF A = Z THEN LET A = Z + Y
320 LET P = P + A
330 GOSUB S * Z
340 IF A = B - X THEN GOTO 280
350 NEXT T
360 PRINT "DRAW"
370 GOTO X
400 IF P > B THEN LET P = P - B

410 LET R = P
420 LET D = PEEK 16396 + 256 * PEEK 16397
430 FOR I = X TO Z*B + B
440 IF PEEK (D+I) = R + 28 THEN POKE D+I, V
450 NEXT I
460 RETURN

It should be obvious to you looking at line 50
that the program would crash if you were to press
(RUN) (NEW LINE). This is because we have some
undefined variables, such as S and Z.

15

The reason these variables are used in the
program is to save space, and the variables need
to be defined before we can play Naughts and
Crosses. One way to do this
programs in this book - use 2 programs
program to define the variables, (RUN)
then enter the second program
stored in memory.

is used in

with the

many other
, the first
it, and
variables

We could use this same method in this program,
but instead we will use the second method of
defining the variables after the main program has
been entered.

We can do this by entering BASIC lines without
line numbers, and pressing (NEW LINE). This tells
the operating system we wish to execute that
instruction immediately.

In this program, after you have entered the
listing above, enter the following lines without
line numbers, and press (NEW LINE) after each
line has been entered:

LET X = 1
LET Y = 2
LET Z = 4
LET B = 8
LET S = 100

All the variables have been defined. We still
cannot press (RUN) as this will clear the
variables from memory. Enter (GOTO 1) (NEW LINE).

Structure of the Program:

You may find it difficult to follow the structure
of this program because its logic is fairly well
hidden and the use of variables in the listing
makes it difficult to know what is happening.

16

Lines 70 to 120 draw the Naughts and Crosses
board. Note that this is the only time in the
program that the board is drawn up. All changes
to the board which occur later involve changing
only the piece that is to be moved.

The variable T in line 130 indicates TURN and
after each player has had 4 turns, the game must
be a draw (see line 360). This is obvious as
after 4 turns 8 spaces will be filled up and the
computer's first turn has already been made = all
9 possible positions have been filled.

we obtain R (REPLY)
subroutine looks
screen display and
the letter 'O',

player's turn.

When it is the player's turn,
and go to subroutine 420. This
at the first 40 squares of the
replaces the number entered by
This effectively finishes the

If it is the computer's first turn (T = 1)
there is some preliminaries we have to do:
remember the PREVIOUS move (variable P), set the
ADD factor (variable A) to zero, and determine if
the player started on an EVEN (variable E) number
or odd.

Note that the board is defined in such a way that
all corner moves are represented by an odd number
and all side moves are even numbers! The other
feature of interest is that a blocking move is
either +4 or -4 the original move. In other words
if the computer moves to square 1, you will need
to move to square 5 to stop it making 3 in a row.

If it is the computer's first move or if the
player has blocked successfully (line 250) then
the computer cannot yet claim victory (GOTO 300).
On the other hand, if it is a win the computer
fills in the appropriate square, claims victory
and jumps back to the beginning.

17

The computer's sequence of moves is determined by
PREVIOUS and ADD. The computer's first move will
always be to the right clockwise of the player's
first move (PREVIOUS + 1). Its next move will be
2 to the right clockwise from that (PREVIOUS +
2), and so on. Lines 300 and 310 take care of the
exception where ADD is not automatically
incremented by 1.

That's it. Good luck.

18

PINCH

This is a one dimensional version of the Japanese
game Go. This is one of the few games in this
book where it is not possible for a player to
play alone or against the computer.

Nonetheless we have included it in this book
because it is such an interesting and challenging
game. At the end of this listing we also make
suggestions on how to teach the computer to play
PINCH, but you will need additional memory for
that.

The rules of the game of PINCH first appeared in
Scientific American in 1980. (As mentioned above
it is a 2-dimensional version of GO, and was
included in a discussion of possible 2
dimensional games, including 2 dimensional
Chess !)

Two players take turns to place stones on a 9
position board. You can capture a connected group
of your opponent's stones by surrounding them on
both sides. The board appears like this:

-----X 0---------------0
1 2 3 4 5 6 7 8 9

If it is X to move, placing a stone at 5 would
capture the stone at 4. Placing a stone at 8
would capture the stone at 9. On the other hand
placing a stone at 6 would have no effect.

It is illegal to make a suicidal move, but you
can go into what would normally be a suicidal
position if that results in the capture of
opposing stones.

19

There is only one other rule, and that is that it
is illegal to make a move which would make the
positions exactly the same as they had been after
your last turn. This is a rule which this program
does not check for.

PROGRAM STRUCTURE

The structure of the main program is:
Initialize varaibles

MOVE Print the board
Print the player's move
If possible, kill opponents groups
If possible, kill player's groups
If the move was legal, goto MOVE
Give the player another turn

B is the current player. The subroutine at 500
checks which groups not belonging to B are dead
and removes them. The ends are regarded as
belonging to B.

After the subroutine has been run once, B is
changed, and the subroutine checks for a suicidal

move.

PINCH:

Initialize variables
Go to NEXT B

FIND Find a stone of B's
Set equal to S

NEXT B Increment P until a blank or
another of B's stones is found.

If a blank go to FIND
Kill stones between S and P

20

110 LET B$="0X"
120 LET B=1
130 CLS
140 PRINT A$(TO 17)
150 PRINT
160 PRINT AT 5,B-B;"PLAYER ";B;"?"
170 INPUT S
180 LET A$(2*S-B/B)=B$(B)
190 PRINT AT B-B,B-B;A$(TO 17)
200 LET D=B-B
210 GOSUB 500
220 LET B=INT ((B+l)/B)
230 LET D=-D
240 GOSUB 500
250 IF D<=B-B THEN GOTO 130
260 GOTO 220
500 LET A$(19)=B$(B)
510 LET P=-l
520 GOTO 560
530 LET P=P+2
540 IF P>=19 THEN RETURN
550 IF A$(P)<>B$(B) OR A$(P+2)=B$(B)

THEN GOTO 530
560 LET S=P
570 LET P=P+2
580 IF A$(P)="~" THEN GOTO 530
590 IF A$(P)(>B$(B) AND P<19 THEN GOTO 570
600 IF P>B/B THEN LET D=D+B/B
610 FOR K=S+2 TO P-2 STEP 2
620 LET A$(K)="-"
630 NEXT K
640 GOTO 540

NOTES:

You may realise from looking at this program that
it only just fits into the IK machine. There are
therefore attempts to minimise any waste of
memory.

One simple way to do this is to eliminate all

21

references to the number 1 or 0 in the listing as
these both take up 6 bytes. Instead we use B/B
for 1, and B-B for 0 - both of these only require
3 bytes.

Line 220 gives a simple way of switching between
1 and 2. If B was 1, the result will be B=2,
while if B was 2 the result will be B=1!

RUNNING THE PROGRAM

As it is illegal to move to a position where you
will immediately be captured unless you can
capture some of your opponents stones by the
move. If you do make an illegal move, the group
of stones will be removed, and it will still be
your move.

The computer does not play this game, but
provides for two players to compete, removing
dead stones for them. This is an interesting, and
constantly changing game. The stategies involved
should keep you thinking for a while.

IMPROVING THE PROGRAM:

The basic strategy of the game is to ensure that
you can capture whenever possible and not walk
into a trap!

The subroutine at line 500 at present kills any
group located betwen enemies.

It is quite easy to adapt this subroutine to
merely check
how many men

if a group would be killed and if so
removed.

The strategy
therefore be

for a computer to play would
something along the lines:

22

For all possible squares
Check how many enemies would be

killed by this move
Check how many of one's own men

would be killed by this move.
Next move.

As there are only 9 possible squares to go to,
this should not take too long to compute. Then
choose the move which would kill most enemies. If
no such move exists, choose a move which would
not result in suicide.

Once this is working, a further improvement would
be to check whether the move just made would make
it easy for the enemy to capture on the next move
(a simple version of look ahead).

You are going to need all your computer
concentration for this one.

23

BATTLESHIPS

World War II has been declared. As you sit at the
console of your submarine, the captain alerts you
that Intelligence reports 4 battleships in the
general area.

Radar is out! You must bomb the seas and hope to
find the battleships before they find you!

Each ship occupies two adjacent spaces on your 9
x 9 grid: Enter the coordinates and the boys in
the missile room will send a torpedo hurtling to
that point.

If you've hit a ship, an 'X' will appear on the
console - otherwise only 'O'. When you've hit all
ships in the area, the captain orders a move to a
new part of the Atlantic.

PROGRAM STRUCTURE:

Randomly choose the positions
of the 4 battleships

Print the grid
BOMB Get the position to be bombed

If a ship is there,
then print an 'X' there

and if there have been 8 hits
then run the program again

Otherwise, print a 'O'.
Go to BOMB again.

The array X contains the position of the 4
battleships (2 positions on the grid for each
ship). The player's input is checked against each
of these. Grid position 4,1 is stored as 41 and

2U

printed at 8,2 on the screen (the extra spaces
between lines aids readability).

The number of hits is stored in H, and when 8
hits have been recorded the game is started
afresh.

BATTLESHIPS:

RUNNING THE PROGRAM:

100 LET H = 0
110 DIM X(8)
120 FOR R = 1 TO 8 STEP 2
130 LET X(R) = INT (RND*8 + l)*10 +

INT (RND*9 + 1)
140 LET X(R+1) = X(R) + 10
150 NEXT R
160 CLS
170 PRINT " A * 1 z,2^3A4^5ii6Zk

7 8 A 9"
(2 spaces at the beginning, then a
single space between each number)

180 FOR R = 1 TO 9
190 PRINT AT 2*R, R-R; R
200 NEXT R
210 INPUT M
220 FOR R = 1 TO 8
230 IF M = X (R) THEN GOTO 300
240 NEXT R
250 PRINT AT INT (M/10) * 2, (M - INT(M/10)

*10) * 2; "0"
260 GOTO 210
300 PRINT AT INT (M/10) * 2, (M - INT(M/10)

*10) * 2; "X"
310 LET H = H + 1
320 IF H = 8 THEN RUN
330 GOTO 210

25

When you press (RUN) (NEW LINE), the screen will
be blank and two axes will show the numbers 1 to
9. This is your bombing grid.

The ZX81 will be waiting for a number input from
you to bomb. A 2 digit number is required, with
the vertical axis the first number -

e.g. enter 52 if you want to bomb the position
5 rows down and 2 columns across.

You should be able to locate all the ships in
about 40 turns. When all have been bombed, a new
set of axes will be drawn, with the ships now
hidden at different locations.

26

GAMBLING GAMES

* CRAPS

* FRUIT MACHINE

* ROULETTE

* HORSE RACES

* BLACKJACK

CRAPS

(c) by Neil Streeter

This program simulates the dice game 'craps'

If you throw a 7 or 11 on your first throw, you
win immediately. A score of 2, 3 or 12 on your
first throw means you lose.If you throw anything
else you get another throw.

On subsequent throws, you win by matching your
first throw, or lose by throwing a 7.

This is an easy and fun game to play: just type
'Y' to continue playing and the computer does the
rest. It even throws the dice for you.

PROGRAM STRUCTURE

The throwing of the dice is simulated by using
the RND function. Throwing a single die can be
simulated by

LET C= INT (RND * 6)+l

and throwing two dice by
LET C= INT (RND *6)+ INT (RND * 6)+2

Note that this is not the same as
LET C= INT (RND * ll)+2

although both give a random number between 2 and
12.

CRAPS:

100 CLS
110 PRINT"CRAPS"

28

130 LET J=0
140 LET C= INT (RND*6)+ INT (RND*6) +2
150 LET J=J+1
160 IF J = 1 THEN GOTO 210
170 IF C=D THEN GOTO 340
180 IF C=7 THEN GOTO 360
190 PRINT" YOU SCOREA" ;C
200 GOTO 140
210 IF C=7 OR C=ll THEN GOTO 250
220 IF C=2 OR C=3 OR C=12 THEN GOTO 270
230 LET D=C
240 GOTO 190
250 PRINT"SCORE4";C;"&AND WIN"
260 GOTO 280
270 PRINT"SCOREA";C;"6AND LOSE"
280 PRINT
290 PRINT"TYPE ""Y"" TO CONTINUE"
300 INPUT L$
310 IF L$<>"Y" THEN STOP

320 PRINT
330 GOTO 100
340 PRINT"SCOREA"; C ;

"aAND WIN BY MATCHING"
350 GOTO 280
360 PRINT"SCOREA";C;"^AND LOSE"
370 GOTO 280

Happy gambling!

29

FRUIT MACHINE

(c) by Neil Streeter

This program simulates a fruit machine, just like
those in Los Vegas.

You start with $10, and it costs 50c to play a
game. The names of three objects will appear on
the screen. If they are all the same, you win,
and the computer will credit you with your
winnings. Otherwise it will subtract the cost of
the game. You can play again by entering (NEW
LINE), until you run out of money: unlike your
favourite casino the computer does not give
credit.

STRUCTURE OF THE PROGRAM:

The randomizing function (RND) is used to
generate either a bar, an orange or a cherry.
Line 20 generates a number 1 (= N (10.

If N (2, a bar is generated, if 2 (N (5, an

orange, otherwise, a cherry, This gives a
weghting heavily favouring the cherries. If you
don't like the odds, that's the line to change.

INITIALIZE VARIABLES
GENERATE OBJECTS RANDOMLY
CHECK IF PLAYER HAS WON

IF HE HASN'T CHECK IF HE HAS ANY MONEY LEFT
OTHERWISE CREDIT WINNINGS

VARIABLES:

The money you have is stored in M

30

B,A,and C contain the number of bars, oranges,
and cherries in the current game.

FRUIT MACHINE:

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
280
290
310
315
320
330
340

LET M=10
LET B=0
LET A=0
LET C=0
FOR 1=1 TO 3
LET N=(RND*9+1)
IF N>2 THEN GOTO 130
PRINT "BARa";
LET A=A+1
GOTO 190
IF N>5 THEN GOTO 170
PRINT "ORANGE^";
LET B=B+1
GOTO 190
PRINT "CHERRYA";
LET C=C+1
NEXT I
IF A=3 OR B=3 OR C=3 THEN GOTO 250
PRINT AT 4,4;"TOO BAD...YOU LOSE"
LET M=M-.5
IF M<=.1 THEN GOTO 340
GOTO 280
PRINT AT 4,10;"YOU WIN"
LET M=M+A“2/3+B/2+C/3
PRINT
PRINT "YOU NOW HAVE $";M
PRINT "TO PLAY AGAIN PRESS NEWLINE."
INPUT A$
CLS
GOTO 40
PRINT "YOU HAVE LOST ALL YOUR MONEY"

ROULETTE

(c) by Alistair Ogilvy

A gambler's delight: - You start with $100 to bet
on the roulette wheel. You can place your money
on a range of values (between 1 and 36) or odds

or evens.

Then the wheel begins to spin. The numbers flash
onto the screen until the wheel stops. The
computer then calculates how much you have won or
lost, and adjusts the total of your money.

You'd better be careful with this one - you could
lose everything!

PROGRAM STRUCTURE

The numbers are generated by RND. To simulate the
spinning of the wheel, 15 numbers are generated
and successively printed at the same position.

In line 370, the expression
IF (K AND C)

is used. This is true if K and C are both
non-zero.

ROULETTE:

100 LET M=100
105 PAUSE 100
108 CLS
110 LET C=:2
115 PRINT "HIGH?"
120 INPUT H
130 PRINT H,,"LOW?

32

140 INPUT L
150 PRINT L
160 IF H<=L 0R L<1 TUEN GOTO 105
170 IF H<=36 THEN GOTO 206
190 PRINT "O=ODDS OR 1=EVENS"
200 INPUT C
205 LET H=17+L
206 LET 0=INT (36/(H-L))
208 PRINT "0DDS=l INA";0
210 PRINT "$";M,"aBET$"
220 INPUT B
230 PRINT B
250 FOR 1=1 TO 15
260 LET A=INT (37*RND)
265 PRINT AT 9,0;A;"a"
267 NEXT I
270 IF C<>2 THEN GOTO 360
280 IF A<=H AND A>=L THEN GOTO 330
290 PRINT "LOST"
300 LET M=M-B
310 IF M<=0 THEN GOTO 500
320 GOTO 105
330 LET P=O*B - B
340 PRINT "WON $";P
345 LET M=M+P
350 GOTO 105
360 LET K=INT (A/2=INT (A/2))
370 IF (K AND C) OR (K=C AND C=0)

THEN GOTO 330
390 GOTO 290
500 PRINT "LOST ALL"

RUNNING THE PROGRAM:

When the program commences, you are going to be
asked for the number range you wish to bet on:
Choose any high limit and any low limit.

For example, you could bet on all numbers from 1
to 12 or only from 30 to 34.

33

If you wish instead to bet on odds or evens,
simply enter a number greater than 36 in answer
to the query for the high number, and any number
smaller than that for low. The computer will then
ask whether you want odds or evens.

The odds will be calculated (to a round number)
and displayed so that you can .place your bet.

The croupier will obligingly wait until you have
placed your bet before spinning the wheel.

3^

HORSE RACES

(c) by Neil Streeter

This program simulates a three horse race. You
have $500 to begin with and you can bet on any
horse. All horses have an equal chance of
winning. The game ends when you have lost all
your money.

PROGRAM STRUCTURE

The path of each horse is shown by a black bar.
The horse with the longest bar is winning. This
is done by using the PLOT function to fill in his
present position. The race ends as soon as one
horse reaches position 31.

The RND function generates a number between 0 and
1. This is multiplied by 3 and added to 1. The
integer part of this is then 1,2 or 3. The horse
thus chosen is allowed to advance one space.

Note the use of RAND.The function RND always uses
the same sequence of numbers. That is, it doesn't
really generate random numbers, but returns a
pseudo-random number, a number which appears to
be random. For many purposes this is sufficient,
but in this program, that would mean that it
would become predictable which horse would win.

RAND causes RND to start at different places in
its sequence of numbers each time. This is closer
to a RANDOM random number generator.

HORSE RACE:

35

105
110
115
120
122
125
130
135
136
138
140
145
150
160
200
210
220
230
2 50
260
270
290
300
350
360
370
390
400
410
420
450
460

LET E=500
PRINT "BET?"
INPUT B
PRINT B
PRINT "HORSE (1-3)?"

INPUT H
CLS
PRINT "1","aa"
PRINT "2","A¿FINISH"
PRINT "3",
LET W=2
LET X=2
LET Y=2
RAND
LET R=INT (RND*3+1)

IF R=1 THEN LET W=W+1
IF R=2 THEN LET X=X+1
IF R=3 THEN LET Y=Y+1
PLOT W,43
PLOT X,41
PLOT Y,39
IF X=31 OR Y=31 OR W=31 THEN GOTO 350
GOTO 200
IF W=31 AND H=1 THEN GOTO 450
IF X=31 AND H=2 THEN GOTO 450
IF Y=31 AND H=3 THEN GOTO 450
LET E=E-B
PRINT AT 5,0;"MONEY=";E
IF E<=0 THEN STOP
GOTO 110
LET E=E+B*2
GOTO 400

36

BLACKJACK

(c) by Alistair Ogilvy

This is the traditional card game, and it all
fits into the unexpanded IK ZX81. It even keeps
track of the card totals, how much money you have
bet and how much you have left. And naturally, it
won't let you bet more than you have.

The ZX81 dealer asks you how much you want to
bet', then deals himself a card, and then deals
you a card. You are then asked if you want a HIT?
(ie. do you want another card?). Any answer such
as Y or YES or even pressing NEWLINE will be yes,
while N or NO or NEVER! will be taken to mean you
don't want another card.

If your card total is over 21, you've lost. If
you stop before you BUST then the dealer will
deal himself more cards. The dealer always draws
below 16 and sits on 17 and above.

The amount of money you have left will be shown
and you will be invited to bet again.

Step right up, ladies and gentlemen!

STRUCTURE OF THE PROGRAM:

As you can imagine, it's not easy to fit such a
complex program into the unexpanded ZX81. We have
to resort to two space saving techiques:

1. Defining variables in another
program first.

2. Replacing as many numbers as possible
in the program listing by variables.

37

The second method can chop as much as 100 bytes
off a program like this because each number in a
program line takes up 6 bytes as opposed to one
byte for a variable. Admittedly the variable
takes 7 bytes in memory in the first place, but
if you use the same numbers a lot there is
considerable savings possible.

PROGRAM 1:

This program defines the variables we need -
mainly predefining 'A' as a variable and the
string variable B$ which defines the cards in the
pack.

The other variables are the numbers most commonly
used in Program 2: X=1, Y=2, Z=10, and T=21.

100 LET X = 1
110 LET Y = 2
120 LET Z = 10
130 LET T = 21
140 LET B$ = "N23456789TAJQK"
150 LET A = 0

Note that in the definition of cards we used the
letter 'T' to denote the '10' - this enables us
to display all cards as a single letter.

Once this program is entered, press (RUN) and
(NEW LINE). This will save the variables in
memory and the listing of this program is
therefore no longer required.

PROGRAM 2:

This is the program that does all the work -
indeed if you have additional memory you would
not need Program 1. (All you would need to do is

38

to replace all references to X by 1, etc.,., and
include the lines defining A and B$ in the main
program).

The structure of this program is as follows:

NEW BET INPUT PLAYER'S BET
IF NO MONEY LEFT, STOP

DEAL FIRST CARD TO DEALER AND PLAYER
FOR PLAYER AND FOR DEALER:

IF PLAYER ASK IF CARD WANTED
IF SWITCH TO DEALER

DEAL THE CARD AND PRINT IT
CALCULATE VALUE OF HAND AND PRINT IT
IF OVER 21 GO TO PAYOUT
IF DEALER AND OVER 16 GO TO PAYOUT

PAYOUT IF PLAYER BUST, MONEY WON = 0
IF DEALER < 21 AND DEALER TOTAL <= PLAYER

TOTAL THEN MONEY WON = 0
MONEY = MONEY + MONEY WON
GO TO NEW BET AGAIN

As you can see from the above structure there was
insufficient room in the IK version to allow for
greater payout if the player makes Blackjack, or
to allow the player to win if he gets '5 and
under'. If you have additional memory you can
easily write those provisions in.

The numbering in this program is slightly
non-standard: this has been done deliberately to
allow the use of variables in GOTO and GOSUB
statements. We therefore start at line 90 and
have the unusual line 125

90 LET M = z * Z
100 DIM P (Y+Y)
110 PRI NT AT Z, X; M
120 INP UT B
125 CLS
130 IF B > M TH EN STOP

39

Special Notes:

140 LET M = M - B
150 PRINT " A A YOU"; TAB Z; "ZX81"
160 FOR I = Y TO X STEP - X
170 GOSUB T * T
180 NEXT I
190 FOR I = X TO Y
200 LET A=P(I)=X+Z
210 IF I = X THEN PRINT AT Z,X; "HIT?"
220 IF I = X THEN INPUT A$
230 PRINT AT Z,X; " A A & "
240 IF I = X AND CODE A$ = CODE B$ THEN GOTO 280
250 GOSUB T * T
260 IF P(I) > T OR (I=Y AND P(I) > 16) THEN

GOTO 290
270 GOTO T * Z
280 NEXT I
290 IF (P(Y) <= T AND P(Y) >= P(X)) OR

P(X) > T THEN LET B = B - B
300 LET M = M + B + B
310 GOTO Z * Z
500 LET P(I+Y) = P(I+Y) + X
510 LET C = INT (13 * RND) + Y
520 IF C = Z + X THEN LET A = A + X
530 LET P(I)=P(I)+C*(C< Z+Y) +

z * (C > Z+X)
540 IF P(I) < T+X OR A = X - X THEN GOTO 570
550 LET A = A - X
560 LET P(I) = P(I) - Z
570 PRINT AT X+Y, Y * P(I+Y) + Z * (I=Y); B$(C)

580 PRINT AT Y+Y, Z*I-Z+Y;P(I)
590 RETURN

You will notice a strange notation in line 200,
where A = P(I) = 11. The variable A is being used
in this program to keep track of the number of
aces in the player's hand, and what the line says
is: Let A = 1 if the value in the hand is 11.

40

The long way to write this is
IF P(I) = 11 THEN LET A = 1

But we know that the value of an expression such
as P(I) = 11 will be 1 if true and 0 if false.

We can therefore write
LET A = (P(I) = 11)

And as you can see from the program listing, the
brackets are not necessary.

The other line you may find odd is line 530 where
the value of the player's hand is being
calculated. The card just drawn (variable C) can
be anywhere from 2 to 14.

If the value is 2 - 10, we want to add that
value.

If the value is 11 (ace) we also want to add
that value, as long as we are not bust. (That
possiblity is taken care of in lines 540 - 560).

If the value is 12 - 14 (ie. we have drawn J,
Q, or K) then we want to add 10.

The one line 530 does all this for us: it says
add the value of the card if the value is less
than 12 and add 10 if the value is over 11.
Simple, isn't it!

You may also have noticed that we use GOSUB T * T
(which means 21 * 21 = 441) and yet no line 441
exits. This is fine because the program will go
to whichever is the first allowed line after the
number specified (in this case 500).

RUNNING THE PROGRAM:

Because we need to remember the variables we
saved in the first program, we cannot use (RUN)
or (CLEAR) at any stage because that will destroy
our carefully saved variables.

41

It is therefore necessary to use (GOTO 1) (NEW
LINE).

The program works exceptionally well in SLOW
mode, so if you are loading the program from tape
(which will automatically set the mode to FAST)
you will have to enter the SLOW instruction in
first.

Because of space limitations, the program is a
little terse. The screen will first show:

$100 BET?
This means you have $100 to bet with and how much
would you like to wager?

The screen will then show something like:
YOU ZX81
T 8
10 8
HIT?

This means that vou have drawn a '10' (value of
your hand is underneath
dealer has drawn an '8'
you want another card.

your cards = 10) and the
(value of hand = 8). Do

Of course the answer is yes,
another evening spent in mad

and there goes
compulsive gambling.

ZX 81 SHOWS THE WAY

* DAY OF THE WEEK

* SIMPLE SIMON

* KINGS AND QUEENS

* HANGMAN

* QUADRATIC EQUATIONS

SIMULTANEOUS EQUATIONS

DAY OF THE WEEK

Enter your birth date , and the ZX 81 will tell
you on which day of the week you were born.

If you think you are more than 280 years old,
this program is not for you. The computer is not
that silly.

PROGRAM STRUCTURE

The character strings corresponding to each day
of the week are stored one after the other in D$.
The day of the week is calculated as a number
between 0 and 6. This is multiplied by 3, and 1
is added. This gives the position of the first
letter in the name of the day. The day is printed
by PRINT D$(Z TO Z+2)

DAY OF THE WEEK:

110 LET D$="SUNMONTUEWEDTHUFRISAT"
120 PRINT"PLEASE ENTER YOUR NAME"
130 INPUT A$
140 PRINT "HELLO ";A$
150 PRINT "ENTER DATE OF BIRTH","DAY",
160 INPUT D
170 IF D< 1 OR D>31 THEN GOTO 160
180 PRINT D,"MONTH",
190 INPUT M
200 PRINT M,"YEAR"
210 INPUT Y
220 IF Y<1700 THEN GOTO 450
230 CLS
300 LET K=0
310 IF M<3 THEN LET K=1

44

320
330
340
350

360
400
410
450

LET L=Y-K
LET 0=M+12*K
LET P=INT (L/100)
LET Z=INT (13*(O+l)/5) +

INT ((5*L)/4) - P+INT(P/4) + D-l
LET Z=(Z-7*INT (Z/7))*3+l
PRINT A$;"aWAS BORN ONa";D$(Z TO Z+2)
STOP
PRINT A$;"aIS TOO OLD"

45

SIMPLE SIMON

"Simple Simon" is the computer successor to the
age-old game of "Simon Says". In the computer
version, a letter or number is displayed one at a
time on the screen and the player has to
correctly type in the sequence of letters and
numbers as they appeared.

As the number of letters that has appeared on the
screen increases, the letters (or numbers) flash
on to the screen more and more quickly.

This program will also make use of the fact that
in the Sinclair ZX81 the character generator is
located in software and use this information to
display each letter in large (8 lines deep) size.

On many other computers the character generator
(that is whatever it is in the computer that
defines what each letter of the alphabet will
look like on the screen) is handled by a special
chip. In the Sinclair ZX81 all that information
is stored in the ROM (Read Only Memory), which
also contains the operating system.

If you look at your screen closely enough, you
will be able to see that each letter on the
screen (and even the graphics characters) are
made up of little dots closely joined up. In fact
each character space on the screen has room for
64 dots (an array of 8 lines of 8 dots each), and
the information about which dots are to be on and
which are to be off is stored at memory location
7680 onwards.

The information about each letter of the alphabet
(and each graphic character and number) can be

¿4-6

stored in 8 bytes of memory. This is because each
byte of memory has 8 bits and the ZX81 uses each
bit to indicate a different position on the
screen.

We will first of all display this ability to have
larger than life characters in the following
short program -

DISPLAYING LARGE CHARACTERS:

280 CLS

100 LET A$ = (graphics space)
110 LET B$ = " û " (space)
120 FOR X = 28 TO 63
130 FOR L = 1 TO 8
140 LET V = PEEK (7679 + L + 8*X)
150 LET P$ = "" (empty str ing)
160 LET D = 256
170 FOR K = 8 TO 1 STEP -1
180 LET D = D / 2
190 LET C$ = B$
200 IF V < D THEN GOTO 230
210 LET C$ = A$
220 LET V = V - D
230 LET P$ = P$ + C$
240 NEXT K
250 PRINT P$
260 NEXT L
270 PAUSE 60

290 NEXT X

Quite obviously the meat of this program is in
lines 130 - 260:

The variable L is used to indicated which line of
the character we are to print next, and K is the
appropriate dot. It is in line 140 that we obtain
the information about the line to be printed - we
PEEK into memory to see which dots should be

h7

'on'. If the dot is to be 'on, then we will be
print a black square (as defined by A$).

This program demonstrates the method used in the
large printing and will allow you to see how the
eye can often be fooled if the print is small
enough.

In the program above, the display of the large
print character was done while you were watching
it. This had two effects : 1. the display was
quite slow to come up and 2. there was no chance
of missing what the character was. In the program
"Simple Simon" we will switch to FAST mode so
that you won't see the character being built up
on the screen, and then switch to SLOW for your
input.

SIMPLE SIMON:

100 LET A$ = "B" (graphics space)
110 LET B$ _ 11 it- A (space)
120 LET Y$ _ Illi (empty string)
130 FOR G := 1 TO 20
140 LET X := 28 + INT (36*RND)
150 LET Y$ = Y$ + CHR$ X
160 FAST
170 FOR L := 1 TO 8
180 LET V := PEEK (7679 + L + 8*X)
190 LET P$ _ Illi (empty string)
200 LET D := 256
210 FOR K := 8 TO 1 STEP1 -1
220 LET D := D / 2
230 LET c$ = B$
240 IF V < D THEN GOTO 270
250 LET c$ = A$
260 LET V := V - D
270 LET P$ = P$ + C$
280 NEXT K
290 PRINT 'P$

48

300 NEXT L
310 SLOW
320 PAUSE 70 - 3*G
330 CLS
340 INPUT Z$
350 IF Y$ <> Z$ THEN GOTO 370
360 NEXT G
370 PRINT "YOU SAID Z$
380 PRINT Y$; "A IS RIGHT"

The structure of this program is very simple to
follow, once you have seen the Large Print
Program. Note that the amount of time the
character is displayed is reduced as you go
along. Remember the sequence of 20 letters and
numbers correctly, and you've won!

^9

KINGS AND QUEENS OF ENGLAND

This program uses a 'multiple choice' format to
test your knowledge of history. You will be asked
who was reigning in a particular year, and given
three answers from which to select. You then type
the number of the answer, and the computer will
tell you if you are right or not.

PROGRAM STRUCTURE

Initialize variables
FOR J = 1 TO 3

select a date
find the king who reigned then

NEXT J
select one of the 3 dates
print question and choices
check the answer
run the program again

The kings and the years of their death are stored
in the string, Z$. The entry for each king is 7
characters long - padded with blanks if
necessary. When a date has been chosen, each
entry is checked until one is found where the
king died after the chosen year.

The next entry is obtained by adding 7 to the
position of the character that was previously
being considered.

B$ is a two dimensional array used to store the
names of the 3 kings offered as choices. B$(l,l)
refers to the first character in the first name.
B$(l) refers to the whole of that name.

50

Note that the program is run again at the end.
RUN does not clear the screen, so the question
remains on the screen while the computer selects
the next question. This gives you time to see the
answer given by the computer.

KINGS AND QUEENS OF ENGLAND:

100 LET Z$="1O87W1£s11OOW2ù,1135H1q,1154STù.1189H2 a
1199R161216Ja^l272H3¿13O7ED11327ED21377ED
31399R2£>1413H4 J422H5a1461H6&"

110 DIM P(3)
120 DIM B$(3,3)
130 RAND
140 FOR J=1 TO 3
150 LET P(J)=INT (RND--396 + 1065)
160 LET X$="0000"
170 LET I=J/J
180 LET X$=Z$(I TO 1+3)
190 LET 1=1+7
200 IF VAL(X$)<=P(J) THEN GOTO 180
210 LET B$(J)=Z$(I-3 TO 1-1)
220 NEXT J
230 LET N=INT (RND*3 + J/J)
240 CLS
250 PRINT "WHO REIGNED INfc";P(N),"1;B$(J/J);"

ù62a";B$(2);"aA3a";B$(3)
260 INPUT X
270 IF B$(X)=B$(N) THEN PRINT "YES"
280 IF B$(X)<)B$(N) THEN PRINT ”NO^";B$(N)
290 RUN

Take especial care in entering Line 100!
Rememeber the format we are using : for each
monarch, we enter the date of his death, then a
three letter code for the monarch's name. Each
entry therefore has 7 characters (where the
abbreviation is less than 3 characters, we make
it up to three by adding spaces).

51

RUNNING THE PROGRAM

This program will keep on running forever unless
you type break or input an illegal value.
You will be asked who reigned in a particular
year, and three possible answers will be given.

It is possible that not all of these answers will
not be different. You will still be marked
correctly, no matter which of the correct answers
you choose. If the king died in the given year
(so that there were 2 kings in that year) choose

the new king.

If you select the wrong answer, the correct
answer will be printed on the screen.

KINGS AND QUEENS OF ENGLAND Part 1:

W1 1066 - 1087
W2 1087 - 1100
Hl 1100 - 1135
St 1135 - 1154
H2 1154 - 1189
R1 1189 - 1199
J 1199 - 1216
H3 1216 - 1272
Edl 1272 - 1307
Ed2 1307 - 1327
Ed3 1327 - 1377
R2 1377 - 1399
H4 1399 - 1413
H5 1413 - 1422
H6 1422 - 1461

Norman

Plantaganet

Lancaster

52

HANGMAN

This is a game for two players. One types in a
secret word while the other is not watching. Then
the other player tries to guess the word. After
guessing 10 wrong letters, the game is over and
the man is hung.

PROGRAM STRUCTURE

Get the secret word
GUESS Print the number of letters in the word.

Get the letter guessed
If the letter is in the word

Put every occurence into
the right place in A$

Otherwise, G = G + 1
Print G parts of the man being hung

Print A$
If the man is hung, or the word guessed

Start a new game
Otherwise, goto GUESS

The variable G contains the number of wrong
guesses so far. To begin with, only subroutine
500, which does nothing, is executed. After that,
for every wrong guess, one more of the
subroutines is executed. Each prints another part
of the man being hung.

A$ contains the word guessed so far. G$ is the
letter guessed this time.

HANGMAN:

100 PRINT "NEW SECRET WORD?"

53

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
500
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

INPUT X$
LET W= LEN X$
DIM A$(W)
LET G=0
PRINT W;" LETTERS"
PRINT "GUESS?"
INPUT G$
CLS
LET 0=0
FOR L=1 TO W
IF X$(L)=G$ THEN LET A$(L)=G$
IF A$(L)=G$ THEN LET C=1
NEXT L
IF NOT C THEN LET G=G+1
IF A$=X$ THEN PRINT "**YES**"
PRINT A$
PRINT
FOR L=500 TO 5OO+2O*G STEP 20
GOSUB L
NEXT L
IF A$=X$ OR G=10 THEN RUN
PRINT
GOTO 150
RETURN
PRINT ;
RETURN
PRINT W
RETURN
PRINT "CI­
RETURN
PRINT "6&l"
RETURN
PRINT
RETURN
PRINT
RETURN
PRINT "V
RETURN
PRINT
RETURN
PRINT

(graphics A,A,A)

(graphics A,A,A)

(space , space,graphics 5)

(space , space,graphics 5)

54

690 RETURN
700 PRINT "f (graphics 8,4)
710 RETURN

RUNNING THE PROGRAM

The word appears on the screen as you type it in,
so make sure your opponent doesn't sneak a look.
The computer does not check that the word is
legal or contains only legal characters, but I
don't think your opponent will be too pleased if
it illegal.

When guessing you can only guess one letter at a
time. As you guess wrong letters, a man being
hung is drawn. The aim is to guess the word
before the man is hung.

The letters you have guessed correctly are
displayed in their correct positions at the top
of the screen. You will be told how many letters
are in the word.

55

QUADRATIC EQUATIONS

(c) by Neil Streeter

This program will solve equationss of the form

A*(X**2) + B*X + C = 0

for you. You enter the values of A,B and C. The
program will solve for real or imaginary roots.

PROGRAM STRUCTURE

The program uses the formulae

and
X = (-B + SQR(B**2 - 4*A*C))/2*A
X = (-B - SQR(B**2 - 4*A*C))/2*A

to calculate the roots of the equation.

If B**2 - 4-'A'“C is negative, then the roots are
imaginary.

QUADRATIC EQUATIONS:

110 PRINT "A QUADRATIC EQUATION HAS",
"THE FORM"

120 PRINT
130 PRINT"A (X)SQUARED + B (X) + C = 0"
140 PRINT
150 PRINT "INPUT A",
160 INPUT A
170 PRINT"A=";A
180 PRINT" INPUT B",
190 INPUT B
200 PRINT" B=" ; B
210 PRINT" INPUT C"
220 INPUT C

56

230
235
240
250
260
270
280

290
500
510
520
530

540
550

PRINT"C=";C
LET J=(ABS B)**2-(4*A*C)
IF J<0 THEN GOTO 500
LET P=SQR J
PRINT"THE ROOTS ARE REAL"
PRINT
PRINT"X=";(-B+P)/(2*A);

"a0R^";(-B-P)/(2*A)
STOP
PRINT"THE ROOTS ARE IMAGINARY"
PRINT
LET P=ABS J
PRINT"X=";-B/(2*A)+/-

(SQR P)/(2*A);"I" *

PRINT
PRINT"WHERE I = THE SQUARE ROOT",

"OF -1"

57

SIMULTANEOUS EQUATIONS

This program solves two simultaneous equations of
the type

A*X + B*Y + C =0

You enter, in order, A,B and C for the first
equation, then for the second.

If there is no solution, or there are an infinite
number of solutions, you will be told that the
problem is degenerate.

PROGRAM STRUCTURE

The input variables are stored in the array X
A and B are the solutions.

D is the common denominator of the solutions.

Line 140 generates the A,B and C that appear down
the screen as prompts as you input the data. 37
is one less than the code for A. So for I = 1 or
4, it prints A; for I = 2 or 5, B; and for 1=3
or 6, C.

100 DIM X(6)
110 PRINT "SOLUTIONS TO 2 EQUATIONS:"
120 PRINT "A*X + B*Y + C =0",,,"ENTER

DATA"
130 FOR 1=1 TO 6
140 PRINT CHR$ (37+I-INT ((1-1)/3)*3),
150 INPUT X(I)
160 PRINT X(I)
170 NEXT I
300 LET D = X(2)*X(4)-X(1)*X(5)

58

310
320
330
340

350
360

IF D = 0 THEN GOTO 360
LET A = (X(3)*X(5) - X(2)*X(6)) / D
LET B = (X(1)*X(6) - X(3)*X(4)) / D
PRINT "SOLUTIONS ARE:" , ,

"X=" ; A , , "Y=" ; B
STOP
PRINT "DEGENERATE: NO SOLUTIONS"

59

ARCADE GAMES

* STAR WARS

* LUNAR LANDER

* ASTEROIDS IN SPACE

* BOMBS AWAY

* U.F.O.

* BREAKOUT

SPACE TAXI

STAR WARS

(c) by Neil Streeter

You are the rear gunner in a space craft
defending the Mother Ship. Through your space
port you can see the enemy trying to get through
the defenses of the Imperial forces.

You quickly shift your gun sight to get the enemy
within firing range, and blast away. GOT HIM!

But what's that? Another one? YES - have to get
him as well. If you can ward off the repeated
attacks for 3 minutes you know that the Imperial
forces will have been able to smash the enemy's
power supply.

How many of the invaders can you destroy?

PROGRAM STRUCTURE

Lines 140 to 170 both print the space ship at its
present location and blank out its previous
position.

Since it can only move one space at a time, by
writing blanks to all adjacent positions, the
previous ship is overwritten.

100 LET A=600
110 LET B=0
120 LET H=INT (RND * 18)
130 LET V=INT (RND * 26)
140 PRINT AT H-1,V+1 ; " . .

(2 blanks)
150 PRINT AT H,V ; " A

(blank, graphics 2,T,blank)

62

160 PRINT AT H+1,V ; " & & "
(blank, 2*graphic 2,blank)

170 PRINT AT H+2,V+1 ; " & (2 blanks)
180 PRINT AT 11,15 ; "+"
190 LET A=A-1
200 IF A=0 THEN GOTO 300
210 IF INKEY$="5" THEN LET V=V-1
220 IF INKEY$="6" THEN LET H=H+1
230 IF INKEY$="7" THEN LET H=H-1
240 IF INKEY$="8" THEN LET V=V+1
250 IF INKEY$="9" THEN GOTO 270
260 GOTO 140
270 IF H >= 10 AND H <= 11 AND V >= 13

AND V <= 14 THEN LET B=B+1
280 CLS
290 GOTO 120
300 PRINT AT 0,0 ;; "SCORE=" ; b

RUNNING THE PROGRAM:

The aim of this game is to shoot as many alien
space ships as you can in the allotted time.

You can move the gun sight of your space ship
with the buttons 5 to 8. They move the laser gun
in the direction of the arrows. When the alien
space ship is in the cross lines of your gun (the
'+' in the centre of the screen) you can fire by
pressing 9.

At the end of your alloted time at the guns, your
score will be displayed. Can you shoot more
invaders the next time they attack?

63

LUNAR LANDER

(c) by Neil Streeter and Beam Software

In this ZX81 version of the classic arcade game,
you have to land your space ship safely.

The control panel of your space craft is able to
display the velocity relative to the ground, the
height above the ground and the amount of fuel
left. An inset displays your position above
ground graphically.

Unfortunately your control panel is not able to
show your acceleration, so you have to use some
intuition to get a good landing.

Your initial velocity is upwards, and you are at
a distance of 2000ft above the ground. (A
positive velocity corresponds to upwards travel,
and a negative velocity to downwards travel).

If your velocity is more than 100ft/sec when you
reach the ground, your craft will not be able to
withstand the impact and you will ** CRASH **.

You can alter your velocity by applying thrust,
and deciding the duration of that thrust. If you
run out of fuel your attempts to apply upwards
thrust will be futile and you will no doubt crash
as your craft accelerates to the ground.

PROGRAM VARIABLES

V is the velocity of the ship, and initially it
is a random number between 0 and 500.

64

PROGRAM STRUCTURE

H = the height of the ship above the ground
R = the fuel reserve.
F = the force (or thrust) upon the ship.
A = the acceleration.
T = the time for which the force will act.

The new velocity and height are calculated using
the formulae:

V = 2*A*T + V
and H = H + A*T**2 + V*T

You may note from the formula A = F - 32 that the
acceleration is that of the earth. This is a
Lunar Lander that is coming back to earth!

Line 200 prints the lander. If its distance from
the ground is more than 2000ft it is printed at
0,2, since (H (2000) is false and therefore
has value 0. So the the value of the whole
expression is 0. If (H (2000) is true (and has
value 1) then the value of the expression is
20-H/100

LUNAR LANDER:

110 LET V=INT (RND * 500)
120 LET H=2000
130 LET R=6000
140 GOTO 260
150 PRINT AT 1,O;"THRUST (0-99)"
160 INPUT F
180 PRINT AT 1,O;"TIME (1-6)AA&"
190 INPUT T
200 CLS
210 IF F*T>R/10 THEN LET F=R/(10*T)
220 LET R=R-F*T*10
230 LET A=F-32

65

240 LET H=A*T**2+V*T+H
250 LET V=2*A*T+V
260 PRINT,"MOON LANDER"
270 IF H<=0 THEN LET H=0
280 PRINT,"SPEED ";V
290 PRINT,"DIST ";INT H
295 PRINT,"FUEL ";R
300 PRINT AT (H<2000)*(20-H/100),2 ; ' '/V'

(graphics TY)
305 PRINT AT 21,1 ; "«mm" (graphics 6666)
310 IF H>0 THEN GOTO 150
320 PRINT AT 5,0;"SC0RE=";100+V
330 IF V<-100 THEN PRINT"CRASH"
360 IF 100+V>0 THEN PRINT"LANDED"

RUNNING THE PROGRAM:

This IK version does not feature "real time"
action of the lander. Rather you have to decide
what thrust you are going to apply and for how
long. The program then calculates your position
as a result of that decision and you start again.

Note that the height and velocity of the Lander
are determined by the laws of physics: the effect
of acceleration varies as the square of the time.
If you apply a thrust of 80 for 2 seconds the
effect is going to be quite different to applying
that thrust for 4 seconds!

Hints for happy landing:

Your craft is initially travelling with an
upwards velocity, just like a tennis ball as it
leaves the tennis racket -"if no further force is
applied, the ship is going to continue travelling
upwards for a little time and then fall down to
earth gently again.

66

Until you gain familiarity with the controls
apply thrust for only short periods of time: this
will mean you will probably run out of fuel in
your first few games, but you can use this
expertise to make perfect landings later.

If you find the program too easy, you can alter
the initial amount of fuel in your Lunar Lander
by altering line 130.

Best of luck, Lunar Man.

67

ASTEROIDS IN SPACE

(c) by Neil Streeter

You are travelling through space in your space
ship, when you suddenly encounter a meteor storm.

You can steer your ship past these using your
rudder controls only (key '5' to go left and '8'
to go right) - hyperdrive has been disabled by
one of the meteors.

As if this was not bad enough, if you do survive
the meteor storm, you will find that you have
become so disoriented that you are travelling the
wrong way in the space lanes. All the other space
ships are coming at you.

You must steer past these in the same way as
before, but the ships are bigger than the
meteors, so it is more difficult.

Eventually you will CRASH! When you do, you will
find your survival rating on the screen of your
spaceship console.

PROGRAM STRUCTURE

The program uses the SCROLL funtion to move the
meteors and space ships (other than yours).

When the display is SCROLLed, your ship will move
with everything else, so it is overwritten with
blanks, then printed again in the correct
position. In this way, your ship stays on the
same line in the screen while everything else
moves.

68

The positions of the meteors coming towards you
are kept in A,B,C,D and E; with E being the
closest. By comparing E with the position of your
ship, the program determines whether or not you
are about to crash.

ASTEROIDS:

100
105
110
115
120
125
130
135
160
170
180
190
200
205

210
215
220
230
240
250
255
260
270
280
290
300
500
510

LET A$="g3" (graphics A)
LET N=0
LET A=0
LET B=0
LET C=0
LET D=0
LET T=1
LET X=12
LET R=INT (RND*27)
PRINT AT 21,R;A$
SCROLL
SCROLL
LET N=N+T
IF N=100 THEN LET A$="gE"

(graphics T4)
IF N=104 THEN LET T=2
LET E=D
LET D=C
LET C=B
LET B=A
LET A=R
PRINT AT 9,X-2;'\AilikikZV" (6 spaces)
PRINT AT 11,X;"8HJ" (graphics YT)
IF X>=E-2 AND X<=E+T THEN GOTO 500
IF INKEY$="5" THEN LET X=X-T
IF INKEY$="8" THEN LET X=X+T
GOTO 160
PRINT AT 11,X-1;"CRASH"
PRINT AT 0,0;"SCORE=";N

69

BOMBS AWAY

(c) by Clifford Ramshaw

The aim of this game is to land your plane; but
the runway is covered with rubble which you must
clear away first.

Your plane moves right and descends slowly
automatically, and you can drop bombs to clear
away the rubble by typing 'F'. If there is any
rubble left by the time your plane tries to land,
you will CRASH; otherwise you will glide to a
halt. (ED: We think so, but no-one here has been
able to get a perfect score yet!!)

This is quite a difficult task, so good luck.

PROGRAM STRUCTURE

The only record of where there is rubble is in
the display.

To find out if the plane is about to crash, the
program PEEKs at addresses 16398 and 16399 which
contain the address of the next location to be
printed.

When we PEEK in memory we look to see what is in
that particular memory location. We know from the
ZX81 manual that memory locations 16398 and 16399
have been set aside by the operating system to
hold the position in memory of the next position
to be printed.

This is a little like the ability to specify
where we want to print by using PRINT AT. In fact
we can have the same effect as PRINT AT by

70

changing (ie. POKEing) the contents of 16398 and
16399. Of course it's much harder to do it that
way so no-one does that, but there is no BASIC
command which lets us say something like

IF PRINT AT = 137 THEN ...

Instead if we calculate
PEEK 16398 + 256 * PEEK 16399

we will get the address in memory of the next
position to be printed.

This is not quite the same as knowing which line
and position but it's enough for us to work out
what is there. If we look at the contents of that
position (ie. PEEK) - hence that horrible

PEEK (PEEK etc.)
in line 270 - we will know what is just ahead of
the aeroplane.

There are three possibilities for what we will
find just ahead of the plane: an empty space, an
End-of-Line character, or rubble. This is what we
check for in Line 270. If it's rubble, STOP!!!

The rest of the program is simple to follow -
extremely ingenious and a great game.

BOMBS AWAY:

170 NEXT I
180 PRINT AT A,B;"^" (space)
190 LET B=B+1
200 IF B<22 THEN GOTO 240
210 LET A=A+1

110 LET A=1
120 LET B=0
130 LET S=B
140 FOR I=B 'TO 19
150 PRINT AT 9,1;' ’B" (graphic G)
160 PRINT AT 10,1; ' (graphic A)

71

220 PRINT AT S,B-1;"A" (space)
230 LET B=0
240 PRINT AT A,B;">"
250 IF A=9 AND B=19 THEN STOP
260 PRINT AT A,B+1;
270 IF PEEK (PEEK 16398 + 256*PEEK

16399)=137 THEN STOP
280 IF S=0 THEN GOTO 400
290 PRINT AT S,B-1;"A" (space)
300 IF S=9 THEN GOTO 340
310 LET S=S+1
320 PRINT AT S,B;" B" (graphic 3)
330 GOTO 180
340 LET S=0
400 IF INKEY$="F" THEN LET S=A
405 GOTO 180

RUNNING THE PROGRAM:

It will only take you a few games to realise that
you need good aim to clear all the rubble!

The BOMBS AWAY is controlled by the FIRE button:
the use of the INKEY$ routine in line 400 means
that by pressing 'F' continuously you will keep
on dropping bombs - but that's not good enough to
clear the runway.

Like any good aircraft pilot, you need to
exercise split second timing and sound judgement
as to when to drop the Bomb.

72

U.F.O.

(c) by J. M. Revis

The aim of this game is to strike the fast-moving
U.F.O. as it flies overhead.

It is essential to be accurate - those U.F.O.s
will keep trying to invade the earth until they
are eventually destroyed.

PROGRAM STRUCTURE

The U.F.O. is printed by two FOR-NEXT loops. One
prints it going from left to right; then the
other prints it from right to left. The U.F.O. is
printed, then immediately overwritten with
blanks.

It is by using the shortest possible number of
instructions in the FOR-NEXT loops that the
U.F.O. is able to move so fast. Unfortunately
this also causes the image of the U.F.O. to
flicker.

The function INKEY$ is used to input the 'fire'
command. Unlike the INPUT statement, INKEY$
doesn't wait for input from the keyboard, so if
you don't type 'F' the program keeps going.

U.F.O.:

105 LET B=2
110 FOR N=30 TO 1 STEP -1
120 PRINT AT B,N;"^V (graphics T,Y)

73

140
145
150
160
170
180
185
190
200
205
210
212
215
220
222
225
227
230

PRINT AT B,N;" " (2 spaces)
IF INKEY$="F" THEN GOTO 205
NEXT N
FOR N= 1 TO 30
PRINT AT B,N;"—(graphics TY)
PRINT AT B,N;"& A " (2 spaces)
IF INKEY$="F" THEN GOTO 205
NEXT N
GOTO 110
PRINT AT B,N;"J^|" (graphics TY)
FOR X=20 TO 1 STEP -1
LET Y=15
PRINT AT X,Y;"^^| " (graphics T4)
PRINT AT X,Y;"A A " (2 spaces)
IF B=X AND Y=N THEN GOTO 230
NEXT X
GOTO 40
PRINT AT X,Y;"BOOOOM"

74

BREAKOUT

(c) by Clifford Ramshaw

This program is a BASIC version of the TV game
variously known as BREAKOUT or BRICK WALL.

Although a machine language version of this game
is quite easily done in IK it is a remarkable
achievement by Clifford Ramshaw to have managed
to give us a BASIC version which fits into IK.

The aim of this game is to knock out as much of
the wall as possible. You keep the ball in the
court by moving your paddle left (with the 'Z'
key) or right (with the 'M' key) to hit the ball.

To make the game more interesting, the angle at
which the ball bounces back is random.

PROGRAM STRUCTURE

X and Y are the coordinates of the ball. DX and
DY give the gradient of the path of the ball. The
ball is moved by adding DX to X, and DY to Y then
plotting the new position. The old position is
cleared with the UNPLOT function. If this
position is part of the wall, then there will be
a hole in the wall.

BREAKOUT:

105
110
115
120

GOSUB 1000
LET P=10
LET X=P
LET Y=21

75

125 LET DX=1
130 LET DY=DX
135 UNPLOT X,Y
140 LET X=X+DX
145 LET Y=Y+DY
150 PLOT X,Y
152 IF Y>42 THEN LET DX= INT (RND*3
155 IF Y>42 THEN LET DY=-DY
160 IF X<3 OR X>22 THEN LET DX=-DX
165 IF Y>19 THEN GOTO 180
170 IF X<>P AND X<>P+1 THEN STOP
175 LET DY=-DY
180 UNPLOT P,19
185 UNPLOT P+1,19
190 IF INKEY$="X" THEN LET P=P-1
195 IF INKEY$="M" THEN LET P=P+1
200 PLOT P,19
205 PLOT P+1,19
210 GOTO 135
1000 FOR 1=1 TO 13
1005 PRINT"O"J (graphic A)
1010 NEXT I
1015 FOR 1=0 TO 11
1020 PRINT AT I,0;"B" (graphic space
1025 PRINT AT 1,13;"®" (graphic spac
1030 NEXT I
1035 RETURN

RUNNING THE PROGRAM:

After you press (RUN) (NEW LINE), you will see
the two boundary walls of the court being drawn
up, and then the row of bricks across the back
wall.

Your paddle is 2 characters wide across the
bottom of the court area, and you must position
it correctly to catch the ball as it comes
towards the baseline.

76

If you should miss the program will STOP. Press
(RUN) (NEW LINE) for a new game.

This one is a real challenge.

If you want to make it much easier and allow
yourself an unlimited number of balls to knock
the wall down, you can change line 300 to read:

300 IF X <> P AND X <> P+1 THEN RUN 40

This will have the effect of leaving the old ball
and paddle on the baseline, but as you play on
they will be erased.

77

SPACE TAXI

(c) by Clifford Ramshaw

Space taxi is a game in which you are in a space
ship and you must fly over the white mountains,
dodging the obstacles for as long as possible.

You move the space ship up (using the ' Z' key) or
down (using the ’M' key), but the movement to the
right is automatic.

If your ship collides with the mountains or an
obstacle, your score is shown and a new game
started. If the ship reaches the right hand side
safely, it will reappear on the left with a new
display.

PROGRAM STRUCTURE:

The subroutine at 1000 sets up the mountains and
the obstacles. The height of the mountains, and
the position of the obstacles is random. They are
shown on the screen, and this is the only record
of where they are. Line 170 looks at the next
position to be printed, and checks whether or not
it is blank.

The position of the space ship is recorded by
co-ordinates X and Y. Lines 80 and 90 control the
vertical movement of the space ship, and the X
component is automatically incremented.

SPACE TAXI:

10
20

LET S=0
LET Y=1

78

30 LET X=0
40 CLS
50 GOSUB 1000
60 PRINT AT Y,X;"J" (graphic space)
70 LET D=0
80 IF INKEY$="M" THEN LET D=-l
90 IF INKEY$="Z" THEN LET D=1
100 LET S=S+1
110 LET X=X+1
120 IF X=31 THEN GOTO 30
130 LET Y=Y+D
140 IF Y<0 THEN LET Y=0
150 PRINT AT Y,X;'QJ" (graphic greater than)
160 PRINT AT Y,X+1;
170 IF PEEK (PEEK 16398 + 256 * PEEK 16399)(>O

THEN GOTO 60
180 PRINT S
190 PAUSE 100
200 RUN
1000 FOR J=0 TO 31
1005 FOR 1=0 TO 2+INT(RND*3)
1010 PRINT AT I,J;"®" (graphic space)
1015 NEXT I
1020 NEXT J
1025 FOR 1=1 TO 15
1030 PRINT AT INT(RND*5),INT(RND*27)+5;" "

(space)
1035 NEXT I
1040 RETURN

RUNNING THE PROGRAM:

As you can see, this is only a short program but
exceptionally well designed and great fun to
play. Moreover it has a great scoring routine
which gives you a score as soon as you crash.

If you manage to get through all the obstacles on
your first pass through the mountains, another
mountain range appears and the score is

79

continually updated

You will note that Line 200 contains the
instruction (RUN) which you would not normally
expect to find in a program listing.

This is a device to enable continuous running of
the program: if you should happen to CRASH, then
the score will be displayed for some seconds, and
then the game starts over again. In effect this
saves you the need from having to type (RUN) (NEW
LINE) at the end of each pass through the
mountains•

Watch out: Space Taxi is addictive!

80

ZX 81 UTILITY PROGRAMS

* BUBBLE SORT

* LINE RENUMBERING

* MACHINE CODE EDITOR

BUBBLE SORT

This program sorts 15 numbers. You can watch the
smallest numbers 'bubble' to the top on the
screen. If you don't want to input your own
numbers, the computer will generate them for you.

PROGRAM STRUCTURE

This program would probably be more useful as a
subroutine than by itself. You could use it, for
example, to order the cards in a hand in a Bridge
program, for example. Nonetheless it is an
interesting program in its own right.

If you want to use it as a subroutine, note:
The variable N contains the number of

items to be sorted. If this is not 15, then
change line 100.

The numbers to be sorted are in array P.
If your program sets up the array, then all you
need to sort the array are lines 270 to 380.

Lines 350 and 360 just print the array so
that you can watch the sort. You may want to
delete them if you are using the sort in another
program.

100-110 INITIALIZATION
120-190 ENTER NUMBERS FROM KEYBOARD
200-220 COMPUTER GENERATED NUMBERS
230-260 PRINT NUMBERS
270-380 SORT

The program works by compearing two elements in
the array (in line 310) and changing their order
if necessary.

82

It is called a Bubble Sort because the "lighter"
numbers seem to "bubble" to the top. When there
are no more bubbles, the program stops.

BUBBLE SORT DEMONSTRATION:

100 LET N=15
110 DIM P(N)
120 PRINT "OWN NUMBERS?"
130 INPUT B$
140 IF B$="N" THEN GOTO 200
150 PRINT "ENTER 15 NUMBERS"
160 FOR Y=1 TO N
170 INPUT P(Y)
180 NEXT Y
190 GOTO 230
200 FOR X=1 TO N
210 LET P(X)=15*RND+1
220 NEXT X
230 CLS
240 FOR X=1 TO N
250 PRINT AT X,0;P(X)
260 NEXT X
270 FOR J=1 TO N-l
280 LET K=J+1
290 FOR I=K TO N
300 LET L=N+K-I
310 IF P(L)>P(J) THEN GOTO 370
320 LET T=P(L)
330 LET P(L)=P(J)
340 LET P(J)=T
350 PRINT AT J, 0; P(J) ; "&e>"
360 PRINT AT L,0;P(L);"
370 NEXT I
380 NEXT J

RUNNING THE PROGRAM:

This program gives a very nice visual

83

demonstration of the sorting process, so it is
much more interesting if run in the SLOW mode. If
you are going to be loading this program from
cassette, be sure to change back to SLOW before
pressing RUN.

The program will ask you if you would like to
submit your own disordered numbers or let the
computer choose its own (line 140).

Then just sit back and watch the program at work.

LINE RENUMBERING

This is a program that you may find useful if you
are in the habit of developing programs and find
yourself at the end of the day with oddly
numbered lines and no room to fit in that last
brilliantly conceived routine in the middle.

Enter this short program, type (RUN 9990), (NEW
LINE), and next time you look at the listing,
just like magic it has all been cleaned up.

An added bonus is that at the cost of only one
more line you can have a screen display of all
lines which contain a GOTO or GOSUB statement.

(Because the ZX81 allows computed GOTOs and
GOSUBs as in GOTO 100 + A-'1O it is not possible
for a program to renumber the GOTOs and GOSUBs -
but at least you'll know where they are and won't
miss any).

TEST PROGRAM:

The following program is a 'test' program in that
it won't change any of the lines numbers but will
illustrate the operation of the Line Renumbering
Program.

The program assumes that the first line in your
program is numbered 100 and that you want the
program lines to increase in steps of 10. To
change this, alter line 9990 to change the
starting line number and line 9998 to change the
size of the increment.

You cannot LOAD a program from tape once you

85

already have a program in memory, so either load
this program first whenever you are going to
develop programs or key it in as required - it's
only short, anyway.

9990
9991

LET L = 110
FOR N = 16515 TO 17400 (assumes IK.

Change to '16515 TO 32700' for 16K)
9993
9994
9995

IF PEEK N <> 118 THEN GOTO 9999
IF PEEK (N+l) > 38 THEN STOP
PRINT 256 * PEEK (N+l) + PEEK (N+2);

(space, minus, greater than)
9996
9997

PRINT L
LET N = N + 3 + PEEK (N+3) +

256 * PEEK (N+4)
9998
9999

LET L = L + 10
NEXT N

If you add a short program of oddly numbered
lines you will be able to test this test program.

Enter (RUN 9990) (NEW LINE) and the screen
display will show you the old line numbers and
what they would be converted to if they were
renumbered.

LINE RENUMBERING MODEL 1:

The Line Renumbering Program is identical to the
test
9996

program above, but we replace lines 9995 and
as follows:

9995
9996

POKE N+l, INT (L / 256)
POKE N+2, L - 256 * INT (L / 256)

The program will now do the renumbering that was
only indicated in the test program. Note that the
screen display will now not be shown.

This program occupies about 260 bytes of memory.

86

If you are concerned about memory usage, see
"Machine Code Editor" where a 38 byte version of
this program can be found.

LINE RENUMBERING MODEL 2:

The Super deluxe Line Renumbering Program is as
follows:

9999 GOTO 9992

9990 LET L = 100
9991 LET N = 16509
9992 IF PEEK N > 38 THEN STOP
9993 POKE N, INT (L/256)
9994 POKE N+l , L - 256 * INT (L/256)
9995 FOR N = N + 4 TO N + 3 + PEEK (N+2) +

256 * PEEK: (N+3)
9996 IF PEEK N = 236 OR PEEK N = 237 THEN

PRINT L; " ; CHR$ PEEK N
9997 NEXT N
9998 LET L = L + 10

Your screen will now show the line number of all
GOTOs and GOSUBs. If you are using a line
increment different from 10 then don't forget to
make the appropriate changes in this line.

The Model 2 Line Renumbering Program requires
about 310 bytes.

The "Show Only" version can be obtained by
replacing lines 9993 and 9994 by:

9993 PRINT 256 * PEEK N + PEEK (N+l);
" -> " L

Note to shorten the programs:

You will no doubt have noticed that line 9997 is
quite cumbersome.

87

That line actually serves two purposes:
1. To determine where the start of the next

BASIC is, and
2. To eliminate the possibility of finding an

End-of-Line character in the middle of
1 ine.

The latter is possible without your even knowing
about it because of the way the ZX 81 treats
numbers in a BASIC line - it converts them to
6-byte code for numbers.

This means that an innocuous number like 123
actually ends up containing the dreaded
End-of-Line character in it 1

You can shorten line 9997 to read
9997 LET N = N + 4

at the risk of a slower program and of finding an
end of line character in the text.

Should this happen, most of the time no problem
will arise except lines after the offending one
will not be renumbered and occasionally your
number will be corrupted.

The "Show Only" version of Line Renumbering will
show you when that happens.

Just a tip if you are tight on memory and forgot
to enter the machine code version firstl

A super deluxe "short" Line Renumbering Program
is possible with the addition of the following
1 ine:

9992 IF PEEK N = 236 OR PEEK N = 237 THEN
PRINT L-10; "=" ; CHR$ PEEK N

88

MACHINE CODE EDITOR

The aim of this short BASIC program is to enable
you to enter a machine code program into a REMark
statement at the beginning of the program.
Incidentally, this program will also illustrate
the uses of PEEKs and POK.Es.

The first line of the program is numbered line
100 and is a REMark statement containing 32
number 'l's: this is where we will place the
machine code, and as far as we are concerned, it
could be filled with the letters of the alphabet
or any 32 graphics characters. All that this line
does is to reserve 32 bytes of memory at an
address we know. (The ZX81 manual tells us that
the first byte of the REM statement will be at
memory location 16514: you could check this out
writing a short program to PEEK around memory!)

The subroutine located at lines 500 onwards PEEKs
at what is in the Ith location (I = 0 to 31 in
this case, but if you want to enter longer
machine code programs, you could alter this
maximum value of I in line 120. Be sure to make
the REM statement long enough).

To PEEK at a memory location is merely to look at
what is in there. The subroutine on its return
contains the contents of that memory location in
A$.

You then have a choice of leaving that memory
location as it is (Press (ENTER) which makes

A$ = "" - see line 170) or of entering what you
would like the memory location to contain. Your
input has to be in 2 digit Hex code.

89

Line 190 POKEs what you decided you wanted in to
that memory location. POKE is computer for PUT -
we are therefore only putting a selected value
into that space.

MACHINE CODE EDITOR:

100 REM 1111111111111111111111111111111111
(32 t imes '1')

110 LET S = 16514
120 FOR I = 0 TO 31
130 SCROLL
140 GOSUB 500
150 PRINT I ; "=" ; A$; ". -)
160 INPUT A$
170 IF A$ = "" THEN GOTO 200
180 LET V = 16 * CODE A$ + CODE A$ (2) - 476
190 POKE S+I, V
200 GOSUB 500
210 PRINT A$
220 NEXT I
230 STOP
500 LET V = PEEK (S+I)
510 LET H = INT (V / 16)
520 LET L = V - 16 * H
530 LET A$ = CHR$ (H + 28) + CHR$ (L + 28)
540 RETURN

RUNNING THE PROGRAM Part 1:

When you have entered (RUN) (NEW LINE) the screen
will display the following at the bottom:

0 = ID -)
and the cursor will indicate it is waiting for a
string input.

What the display is showing you is that the
contents of the Oth location is ID (in hex: you
can confirm this is the number by checking

90

the table at the back of the ZX81 manual).

If you now enter IE (NEW LINE), you will see
0 = ID -) IE
1 = ID -)

This means that the contents of the Oth location
were changed from ID to IE.

Enter the values IE, IF, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F , 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B , 3C, 3D.

If you now look at the listing of the program you
will see that we changed the contents of the REM
line! It now reads

100 REM 23456789ABCDEFGHIJKLMNOPQRSTUVWX

This should be a pretty good demonstration of
what PEEK and POKE is all about. Obviously we can
also PEEK or POKE into the screen area, the
variables held in memory, and so on.

RUNNING THE PROGRAM Part 2:

We will now use the same program to enter a 32
byte machine language routine which can renumber
the lines for us. This is similar to our program
LINE RENUMBERING except it is not able to
indicate which lines contain GOTOs and GOSUBs.

The benefits of this machine language routine
however are that it is much faster in execution
and that it occupies less memory that the BASIC
listing of our other program.

Enter the following values:
11, A2, 40, 21, 64, 00, 1A, 3D, FE, 75, CO, 13,
1A, FE, 27, DO, 01, OA, 00, 09, EB, 72, 23, 73,

91

23, 4E, 23, 46, 09, EB, 18, E6.

You can now test this machine language program by
entering the line (without line number)

PRINT USR 16514 (NEW LINE)
If you now look at the listing you will see that
the lines have all been renumbered! (If you want
the BASIC program to still work, alter lines 140
and 200 to now read GOSUB 240).

It is beyond the scope of this book to explain
how the machine code works, but for the benefit
of readers who understand machine language we
have included the assembly listing with comments.

If you do not understand machine language, we
recommend our book 'Machine Language Programming
Made Simple' - see details at the end of the book
for price and ordering details.

The routine you now have stored in Line 100 will
work for any program. Just delete line 110
onwards, and press (CLEAR) (NEW LINE). You now
have a short program (38 bytes) which will
renumber lines for you just by entering

PRINT USR 16514 (NEW) LINE)

Save this program on cassette and load it every
time you want to develop your own programs. When
you have finished developing your program, you
can delete line 100 and replace it by a REM
statement with the name of your program, such as

100 REM THE GREATEST PROGRAM EVER
or some other suitable title.

RUNNING THE PROGRAM Part 3:

We can use the same program to also create any
other machine language program we may find
useful.

92

For example, it is possible to write a 13 byte
machine language program which will tell you to
the byte how much memory you have left. This
'Memory Left' utility can even be used during the
running of a program!

Because we have a shorter machine language
program, set up line 100 to have only 13 number
'l's, and amend line 120 to read

100 FOR I = 0 TO 12

Enter the following values into the
requested to do so:

program when

B7, ED , 5B, 1C, 40, ED, 62, 39, ED, 52, E5, ci,
C9.

This short machine code program will return the
memory left in answer to entering PRINT USR
16514. Try this now. Now delete all lines except
for line 100 and press (CLEAR) NEW LINE). (This
will remove all the variables created in rinning
the machine code editor program). See what the
result of PRINT USR 16514 is now.

As mentioned above, this utility can even be used
during the running of a program, as in the
following line:

IF USR 16514 (50 THEN STOP
This can be very useful in a developing programs,
and so on.

The assembler codes for this short machine
language program are:

B7 OR A
ED 5B 1C 40 LD DE, (16412)

ED 62 SBC HL, HL
39 ADD HL, SP
ED 52 SBC HL, DE

93

E5
Cl
C9

PUSH HL
POP BC
RET

It is beyond the scope of this book to talk about
machine language programming, but it should be
obvious from these few examples that machine
language programming is able to provide many
benefits for users of the Sinclair ZX81.

The line renumbering routine, for example, is
able to be reduce from some 260 bytes to only 38
bytes and will even execute much more quickly.
The Memory Left utility, for example, cannot be
properly duplicated in a BASIC program because it
is impossible to determine how far down the stack
is without recourse to machine language.

If you are interested in learning machine
language, we recommend our book, MACHINE LANGUAGE
PROGRAMMING MADE SIMPLE. Price and ordering
details are available at the back of this book.

You may be interested to know that both the Line
Renumbering and Memory Left utilities can be
combined in one REM statement if you so desire.
Set Line 100 to have 45 number '1's in it, and
amend line 120 to read FOR I = 0 TO 44. Enter the
Memory Left code first, then the Line Renumbering
code. (The code is exactly the same EXCEPT for
the second entry in the Line Renumbering Program:
change from A2 to AF).

To obtain Memory Left, use PRINT USR 16514, while
to obtain Line Renumbering use PRINT USR 16527.

RUNNING THE PROGRAM Part 4:

It is not necessary to only store machine code
routines in the REM statement. You can use this

94

program to store any numbers as long as they are
in the range 0 to 255.

There may be
of variables
don't want to

times when you need to store a lot
for one of your own programs, but
store them in a variable because

this would use up 6 bytes per number.

This program is ideal
We use this principle
ZX81' .

for that kind of situation,
in the program 'Doctor

95

00100 ;

00110 ;

00120 ;

00130 ;

00140 ;

00150 ;

00160 ;

ZX81 LINE RENUMBERING ROUTINE

CODE TO BE STORED IN REM STATEMENT

NUMBERED AS LINE 100

NOTE : THIS MUST BE FIRST LINE OF PROGRAM

4082 00170

00180 »

ORG 16514

00190 ; DEFINE STARTING POSITION AS END OF REM LINE 100

4082 11A240 00200 START LD DE, 16546 ¡END OF REM LINE 100

4085 216400 00210

00220 »

LD HL,100 ¡LINE # OF FIRST LINE

00230 ; CHECK WE HAVE AN END-OF -LINE CHARACTER

4088 IA 00240 ENDLIN LD A,(DE) ¡CHECK LOCATION CONTAI

4089 3D 00250 DEC A ; END OF LINE CHARACTE

408A FE75 00260 CP 75H ¡IF A=75H, ALL OK

408C CO 00270

00280

RET NZ ¡OTHERWISE ABORT

00290 ¡DE POINTS TO NEW LINE START

00300 ;HL CONTAINS LINE # OF PREVIOUS LINE

4080 13 00310 NXTLIN INC DE ; DE POINTS TO NUMBER OF LINE

408E IA 00320 LD A,(DE) ¡CHECK IF LINE #) 9999

408F FE27 00330 CP 27H ¡IF YES, ALL LINES RENUMBERED

4091 00 00340

00350

RET NC ; SO ALL FINISHED

4092 010A00 00360 LD BC,10 ¡THIS IS LINE INCREMENT

4095 09 00370

00380

ADD HL.BC ¡CALCULATE NEW LINE #

00390 ; INSERT NEW LINE # IN MEMORY

4096 EB 00410 EX DE,HL ¡SWAP HL,DE

4097 72 00420 LD (HL),D ; SO THE DE HAS LINE #

4098 23 00430 INC HL ¡POKE MEMORY WITH

4099 73 00440

00450 »

LD (HL),E ; NEW LINE NUMBER

00460 ¡GET LINE LENGTH AND SKIP TO END OF LINE

409A 23 00480 INC HL ;HL NOW POINTS TO

4098 4E 00490 LD C,(HL) ; LENGTH OF LINE

409C 23 00500 INC HL ¡LOAD BC WITH LINE LENGTH

4090 46 00510 LD 8,(HL)

409E 09 00520 ADD HL, BC ;HL NOW POINTS TO END OF LINE

00530 t
409F EB 00540 EX DE,HL ¡SWAP HL,DE TO RESTORE

00550 ; ORIGINAL CONDITIONS

40A0 18E6 00560 JR ENDLIN ¡RENUMBER NEXT LINE

CHALLENGING THE ZX 81 : IK

* MASTERMIND

* DOCTOR ZX 81

* CAVES AND PITFALLS

* DRAUGHTS

MASTERMIND

In this game, the computer generates a number of
as many digits as you specify (between 3 and 7).

You then have to try to guess the number.

After each guess, the computer will tell you how
many of the digits you entered were in its
number, and how many were in the correct
position. There are no repeated digits in the
number chosen by the computer. This means that it
will never come up with a number such as 1231.

When you work out what the number is, your score
will be displayed. If you get frustrated, and
want to give up, type NEWLINE when you are asked
for a number. Of course, in that case you'll
never find out what the number was.

PROGRAM STRUCTURE

The computer's number is stored as an array of
digits in A.

Your number is stored as a string of characters
in B$. The function CODE used in line 380 returns
the numerical code for the first character in the
string. '28' is the code for 'O', so CODE(B$)-28
gives the numerical value of the first character
in B$.

C contains the number of digits in the correct
position.
R contains the number of digits that are in the
computer's number.

98

MASTERMIND:

100
110

120
130
200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
500
510
520
530
540
600

PRINT "WELCOME TO MASTERMIND"
PRINT "ENTER NO OF DIGITS

IN NUMBER (3-7)"
INPUT N
DIM A(N)
FOR 1 = 1 TO N
LET X= INT (RND'-'-lO)
FOR J = 1 TO I
IF X=A(J) THEN GOTO 210
NEXT J
LET A(I)=X
NEXT I
LET G=0
GOTO 530
INPUT B$
IF B$="" THEN STOP
CLS
PRINT B$
LET R=0
LET C=R
LET G=G+1
FOR 1=1 TO N
LET X=CODE(B$)-28
IF X=A(I) THEN LET C=C + 1
FOR J=1 TO N
IF X=A(J) THEN LET R=R+1
NEXT J
LET B$=B$(2 TO)
NEXT I
IF C=N THEN GOTO 600
PRINT "NUMBERS RIGHT=";R
PRINT "CORRECT POSITIONS=";C
PRINT
PRINT "ENTER.N:'L FIGURE GUESS"
GOTO 300
PRINT "YOU DID IT IN G;"GUESSES"

99

DOCTOR ZX 81

In this program we will try to bring within the
limitations of a IK machine a conversational
program. This is the beginning of a program which
shows the possibilities of Artificial
Intelligence in the Sinclair ZX 81.

Unfortunately because of the restrictions of
memory, Doctor ZX 81 is not a very stimulating
conversât ionalist.

In fact, some people say that like most
professionals, he doesn't seem to listen to what
ordinary people like you and me have to say!

STRUCTURE OF THE PROGRAM:

In this program we will have a conversational
exchange between the computer and a 'patient'. We
will have to define the vocabulary of the good
Doctor and the sentences he will speak.

In order to fit all this into IK we have divided
up the program into three smaller programs: one
to define the vocabulary, one to define the
sentences, and the last one to make the Doctor
talk to us.

Vocabulary:

We will define the vocabulary into a string
variable called A$. This is what Program 2 does.

The point to remember is that it is not essential
to keep the string variable in the program

100

listing as well as in memory. Thus after we have
(RUN) Program 2, we can delete the string
variable A$ from the program listing and still
have it available for Program 3.

The string variable consists of 38 words which we
define as the Doctor's vocabulary. By defining
the vocabulary in this way, we can then refer to
any word by its position in A$ and not have to
waste memory by using the full word many times.

We put a space after each word and that is the
way we will be able to tell where each word ends.

SENTENCES FOR THE DOCTOR:

After we defined the vocabulary for the Doctor we
noticed that the length of that vocabulary was
less that 256 characters (in fact only 203).

You can immediately see that if 38 words require
203 bytes we need to conserve memory wherever we
can.

Since each word can thus be defined by a single
number between 1 and 203 (and thus would need
only 1 byte in memory in an ideal system), it
seems a waste of memory to use a normal variable
for each word which takes up 6 bytes!.

We want to define 11 sentences with a total of 75
words: using normal variables would be
counterproductive as we would run out of memory!

Instead we will use a REM statement at the
beginning of the program to store the words we
want to use in our sentences. We will use a
simple BASIC program to POKE the numbers we want
in to the REM statement.

101

If you have problems understanding what POKE and
PEEK is all about, have a look at the program
"Machine Code Editor" which may make it clearer
to you.

As no word can start at location 0, we will use
'O' to define the end of a sentence in much the
same way that we used a space to define the end
of a word.

CONVERSING WITH THE DOCTOR:

This is Program 3. By the time we come to run
this program we have the vocabulary stored in A$
in memory (and so cannot use (RUN) or (CLEAR))
and the sentences in the REM statement in line
100.

The program consists of taking each word in turn
(variable I) and displaying each character of
that word (variable J). If the character about to
be displayed is a space, we then go to the next
word (Line 170 and 180).

If the word about to be displayed is word # 0,
than we know the sentence is finished and we
display a question and wait for the user's
response.

DOCTOR ZX 81:

Program 1 :

This program defines the sentences we will be
showing on the screen and stores the word numbers
in the REM statement defined in Line 100.

100 REM 11111111111111111111111111

102

11111122222222222222222222222222
22222233333333333333333333333333
3 (at least 90 chars)

110 FOR I = 1 TO 89
120 SCROLL
130 PRINT AT 1,1 ; I ; " A fl .

h» ’

140 INPUT V$
150 IF V$ = "" THEN GOTO 180
160 PRINT V$
170 POKE 16513 + I, VAL V$
180 NEXT I

Press (RUN) (NEW LINE). Enter the following
numbers followed by (NEW LINE) when each value of
the word number is shown:

1 68 (NEW LINE)
2 141 etc..

After you have (RUN) this program, you will get a

1 = 68 21 = 36 41 = 0 61 = 85 81 = 158
2 =141 22 = 195 42 = 36 62 = 102 82 = 27
3 = 88 23 = 46 43 =199 63 = 0 83 = 74
4 =199 24 = 161 44 = 60 64 = 36 84 = 14
5 =131 25 = 0 45 = 51 65 = 199 85 = 0
6 =175 26 = 36 46 =153 66 = 60 86 = 124
7 = 85 27 = 195 47 = 3 67 = 51 87 = 109
8 =199 28 = 147 48 = 0 68 = 153 88 = 20
9 = 97 29 = 153 49 = 36 69 = 3 89 = 0

10 = 0 30 = 85 50 =195 70 = 0
11 =175 31 = 109 51 = 27 71 = 83
12 = 32 32 = 0 52 = 74 72 = 147
13 =195 33 = 185 53 =158 73 = 124
14 =120 34 = 36 54 = 51 74 = 39
15 =199 35 = 195 55 = 60 75 = 56
16 = 97 36 = 147 56 = 0 76 = 161
17 =167 37 = 195 57 = 36 77 = 180
18 = 14 38 = 46 58 =195 78 = 189
19=0 39 = 153 59 =147 79 = 195
20 = 79 40 = 171 60 =153 80 = 92

103

surprise if you look at the listing of the
program: Line 100 will be now be full of strange
letters, commands and graphics chharacters. This
is perfectly normal.

Delete all lines of Program 1 except for Line
100. You should now have a program listing that
looks like

100 REM $? SIN = J ? SIN ? etc...

You can now also press (CLEAR) (NEW LINE) to
delete the variables held in memory to make more
room for the string variable you are about to
enter in Program 2.

Program 2:

Add the following line 110 to the line 100 you
already have:

110 LET A$ = "A ACCEPTABLE AGAIN BYEBYE COME DID
DO ENOUGH FEEL FIND FOR FRIENDS HELLO HERE HOW I
IS I/M LIKE NAME NORMAL REASONABLE SAY THAT/S
THERAPIST THERE THINK THIS TO TODAY WAS WAY WHAT
WHEN WHY WOULD YOU YOUR "

Be sure that you leave a single space only after
each word (including the last word).

It is important that each word should be spelt
properly because if you have any errors, the
words after that may not be printed out
correctly.

Press (RUN) (NEW LINE). The variable A$ is now
stored in memory, so let's check that there are
no errors.

Enter the following lines without line numbers:
PRINT A$(l) (NEW LINE) - You should see A

104

PRINT A$(199 to 202) (NEW LINE)
- You should see YOUR

If you have made any errors, check A$ again.

One you have everything in correctly, and A$ in
memory, delete line 110. Be sure not to press
(CLEAR) or (RUN) from now on.

Program 3:

110 FOR I = 1 TO 89
120 LET J = -1
130 LET J = J + 1
140 LET K = PEEK (16513+1)
150 IF K = 0 THEN GOTO 190
160 PRINT A$ (K+J) ;
170 IF A$ (K+J) <> " A " THEN GOTO 130

(space)
180 IF K) 0 THEN GOTO 220
190 PRINT "?"
200 INPUT B$
210 CLS
220 NEXT I

In order to run this program enter (GOTO 1)
(NEW LINE).

IMPROVING THE PROGRAM:

It should be fairly obvious to you by now how to
change the conversational patter of the good
Doctor: merely redefine new words for the
sentences in Program 1. The numbers refer to the
position in A$ where the word is stored.

Obviously a great improvement could be made by
making the doctor responsive to the player's
replies.

105

This could be achieved
memory by adding lines

in a system with more
such as the following:

105 LET C$ = ""
205 IF I = 19 THEN LET C$:= B$
215 IF C$ <> "" THEN PRINT C$;V';

This will add the name of the player in front of
the questions, for example.

106

CAVES AND PITFALLS

(c) by Clifford Ramshaw

"Caves and Pitfalls" is an attempt to bring to
the Sinclair ZX 81 a mini-adventurethe user of

within the confines of a IK machine.

Naturally this means a loss of many
nicer things in traditional Adventure
as predefined pathways and creatures.

of the
games, such

We have to rely entirely
function in this game, and
tight squeeze indeed.

on the use
even then

of the
it is a

RND
very

The program is so difficult to fit
it has been found necessary to break
up into

into IK that
the program

two :
The first program defines all the

variables, and after we (RUN) this
program we can delete the listing.
All the variables will still be
remembered in the memory.

The second program is the one
actually controls the game,
need the variables we saved

that
Because we
from the

first program, we cannot (RUN) it
((RUN) destroys all variables in
memory), but must use (GOTO 1)
instead.

The other major space saving used in this
program is to try to eliminate numbers from the
listing of the program. Any number in a program
listing, whether something like "FOR X = 1 TO 3"
or something like "LET S = 16384", will use up 6
bytes of memory.

107

This is obviously very wasteful for single and
double digit numbers and we have used variables
defined in the first program to get over this.

VARIABLES USED IN THE PROGRAM:

We define all the fixed variables in the first
program. These are:

Monsters we may meet: These are stored in "A$"
which is dimensioned as 4 strings of up to 6
characters each.

Treasure we can find: These are stored in "B$"
which is dimensioned as 2 strings of 6 characters
each.

Factors which define the score: These are "T"
which is the value of treasure found, and "K"
which is the number of monsters killed. The score
is obtained by multiplying these two.

Numbers used in the second program: 1,2,3,5,10.

CAVES AND PITFALLS

Program 1

100 DIM A$(4, 6)
110 LET A$(l) = "DRAGON"
120 LET A$(2) = "ZOMBIE"
130 LET A$(3) = "WRAITH"
140 LET A$(4) = "HYDRA"
150 DIM B$(2, 6)
160 LET B$(1) = "GOLD"
170 LET B$(2) = "SILVER"
180 LET T = 0
190 LET K = 0
200 LET X = 1

108

this listing and continue with entering program
2.

210 LET R = 2
220 LET Y = 3
230 LET Z = 5
240 LET W = 10

You must (RUN) this program before you can delete

After you have (RUN) this program, you may be
interested to see how much space it is possible
to save by this method of predefining variables.
Enter the following line without a line number:

PRINT PEEK 16404 + 256 * PEEK 16405

This will give you the position of the end of the
variable file, and should be about 16900.

Now delete all this listing by entering the lines
numbers followed by (NEW LINE). You will end up
with a blank screen. To check that all the
variables are still remembered you can enter

PRINT A$(l)

When you press (NEW LINE) you wil 1 see DRAGON on
the screen! By entering the line as above to
check on memory usage, you will see that we have
saved about 300 bytes of program listing, without
losing any of the variables!

CAVES AND PITFALLS

Program 2

Important note:

You cannot enter Program 2 without having entered
program 1, (RUN) program 1, and deleted its

109

listing as above.
Also do not press (CLEAR) or (RUN) at any stage
while entering Program 2 as this will destroy the
variables saved.

100
110
120
130
140
200
210
220
300

310
400
410
420
430
440
450
460
470
500
510
520
530
540
550
560
570
600
610
620
630
700
710
720
730
740

GOSUB 800
PRINT "LEFT,RIGHT?"
INPUT A
CLS
GOTO W * W * INT (R * R * RND + X)
PRINT "A DOOR" ,, "LEAVE OR IN?"
INPUT A
IF A = X THEN GO TO W * W
PRINT "YOU SEE Aa"; A$(INT (R * R * RND)

+ X) , "IT ADVANCES"
GOTO 500
PRINT "WHOOPS...A PIT"
LET A = INT (W * RND + X)
IF A = X THEN GO TO W * W
PRINT "AT THE BOTTOM^";
IF A < Y THEN GOTO 300
PRINT "ARE*"; A ; "* SPIKES"
LET T = T - A
GOTO W * W
PRINT "FIGHT OR FLEE?"
INPUT A
CLS
IF A <> X THEN GOTO W * W
LET A = W * RND
IF A)= Y THEN GOTO 600
PRINT "RIP"
GOTO 800
IF A > Z THEN GO TO 700
PRINT "LOST"
LET T = INT (T/R)
GOTO W * W
PRINT "MONSTER IS DEAD"
LET K = K + X
LET A = R * RND + X
PRINT "FOUNDB$(INT A)
LET T = T + INT (A * W * RND + X)

110

750 GOTO W * W
800 PRINT "SCORE a";T * K
810 RETURN

Note: You may have noticed that the line numbers
do not follow an orderly sequence. This is
deliberately so, so that the GOTO statement in
line 140 can be used.

RUNNING THE PROGRAM:

As mentioned above, we cannot use (RUN) with this
program as doing so will destroy all the
variables which were so carefully defined.

We must therefore use (GOTO 1) instead.

At each step of the mini-adventure, you will be
given a choice of two :

TURN LEFT OR TURN RIGHT ?
GO THROUGH THE DOOR OR NOT ?
FIGHT THE MONSTER OR FLEE ?

The program is looking for an input of "1" or
"2", signifying that you have picked choice 1 or
2.

The game terminates when you have been killed by
one of the monsters.
Should you wish to fight another round of "Caves
and Pitfalls", you will need to reinitialise the
treasure and kill count.

Enter the following lines (without line numbers)
to start again:

LET T = 0 (NEW LINE)
LET K = 0 (NEW LINE)
GOTO 1 (NEW LINE)

Best of luck against the demons of the caverns!

Ill

DRAUGHTS

It is possible for the standard IK Sinclair ZX 81
to play draughts!

Of course, this is only possible by using every
trick in the book, including resorting to machine
language programming for the part of the program
that plays against the human player.

shown on the screen as follows:The board is

1 1 B B B B
2 B B B B
3 3 B B B B
4 B B B
5 5 B B B B
6 W W W W
7 7 W W W W
8 W w W w

A B c D E F G H

(The outer numbers 1 - 8 and the designation of
columns A --Hare not shown on the screen - the
only numbering included are the numbers 1,3,5 and
7 as shown within the board).

The rules of the game the ZX 81 plays follow the
standard rules except that multiple jumps are not
allowed and capture is not compulsory.

Reaching the end line results in the creation of
a king (shown on the screen as inverse letter),
which can only move one square at a time but is
allowed to jump backwards.

STRUCTURE OF THE PROGRAM:

112

As mentioned above, the board is displayed on the
screen - this is the only record the ZX81 has of
the state of play! No other array is required to
keep track of the game.

This therefore requires the use of PEEKs to find
out where the pieces are and POKEs to move them.

In the standard IK version there is also
insufficient room to retain the string variable
that initially sets up the board in the program
listing. We must therefore resort to putting that
string variable in memory and using (GOTO 1) to
start the program.

The last space saving "trick" involves replacing
all 1- and 2-digit numbers in the listing: each
number in a ZX81 listing takes up 6 bytes! This
is true even if your number is only a single
digit. We therefore make liberal use of
constructs such as VAL"2" or CODE"W" which ony
require 4 bytes.

The program is also broken down into 3 different
programs, the last two of which overlay the
previous ones. This is the only way to enter so
much information into the Sinclair ZX81 IK.

The structure is as follows:

Program 1 PUT MACHINE CODE ROUTINE

Program 2:
Program 3:

INTO REM STATEMENT
DEFINE THE BOARD FOR PLAY
DRAW THE BOARD
INPUT PLAYER'S MOVE
CHECK PLAYER MOVE VALIDITY
MAKE COMPUTER'S MOVE

(CALL TO USR ROUTINE)
GO TO NEXT PLAYER INPUT

113

DRAUGHTS:

PROGRAM 1:

100 REM 111111111111111111111111
111111111222222222222222222222222
222222222333333333333333333333333
333333333444444444444444444444444
444444444555555555555555555555555
55555555566666666666666666

The REM
statement must
have 175 chars

in it.

150 LET S = 16514
160 FOR I = 0 TO 174
170 SCROLL
180 PRINT I;
190 INPUT A$
200 IF A$ = "" THEN STOP
210 LET V = 16 * CODE A$ + CODE A$(2)

- 476
220 POKE S+I, V
230 PRINT TAB 5; A$
240 NEXT I

This program will input the machine language code
into the REM statement. When you (RUN) this
program, the screen will show the number, and
waits for you to input the code. If you make an
error, just enter (NEW LINE) to stop the program,
and start again.

The code is on one page at the end of this
program. Note that the code to be entered can
only contain the letters A - F and the numbers 0
to 9. (It should take you less than 15 minutes to
enter this code into the array).

Once you have (RUN) Program 1, the machine
language code will be stored in the REM statement
in line 100. The listing of program 1 is no
longer required. Save the program you have made

114

so far on to tape and delete lines 150 - 240.

DRAUGHTS

PROGRAM 2

At this stage you should have only line 100 from
the program above containing the machine code.
Add the following lines:

120 LET A$ = ' '1 B fib B A B A B B A B b B A B A
3 B & B b B & B B fi» B A ® A ®

b 5 B A S A®
A

B W b W b W A W b 7 W A W A W
A W W A W A W A

W &
The graphics character is
obtained by using GRAPHICS
and (Shift) (A)

150 FOR L = VAL "1" TO VAL "8"
160 PRINT A$ (TO VAL "8")
170 LET A$ = A$ (VAL "9" TO)
180 NEXT L
200 INPUT A$
310 IF USR 16514 > VAL "0" THEN GOTO 200

This program will display the board on to the
screen and test the machine language routine
entered in Program 1.

The screen is saved in the string variable A$,
and is printed in 8 lines. It is essential that a
minimum configuration screen is set up, so that
the structure in memory of the board is as
fol lows :

1 B & B ,B & B[&]B aB eB & B a®3 ...

(where the symboli&lis used to represent
END-OF-LINE). If you check this out this means
that all legal moves are limited to increases and
decreases of 8 or 10 bytes in memory.

115

Users with additional memory connected to the
ZX81 should add the following lines:

130 POKE 16389, 76
140 CLS

This will ensure that a minimum configuration
screen is set up.

Running Program 2:

After SAVEing the program, press (RUN). You can
choose to be in either SLOW or FAST mode. The
screen will be displayed as shown at the
beginning, and the ZX81 will be waiting for a
string input. Press (NEW LINE) to see the
computer's first move. You should see the
computer move its first piece from G3 to H4.

You can continue to press (NEW LINE) to see what
the computer would do next if that was its
position. If you so desire you can change the
string variable in 120 to set up any starting
position.

Preparing for Program 3:

Enter the following line into your listing:
130 STOP

and then press (RUN). Delete lines 120 and 130
and SAVE your program so far.

This has the effect of storing the string
variable in memory without the need to keep it in
the program listing. (Users with more than IK
memory do not need to do this - retain your
original lines 120 - 140)

DRAUGHTS

116

PROGRAM 3

At this stage you should have lines 100, lines
150 - 180, and lines 200 and 310. The string
variable A$ is stored in memory, so do not press
(RUN) or (CLEAR) as this will destroy the
contents of A$.

Add the following lines to your program:

210 LET S = PEEK 16396 + VAL "256" * PEEK 16397
220 LET F = S + CODE A$ + VAL "9" * CODE A$ (

VAL "2") - VAL "298"
230 LET T = S + CODE A$ (VAL "3") + VAL "9" *

CODE A$ (VAL "4") - VAL "298"
240 LET M = (T + F) / VAL "2"
250 IF (PEEK F <> CODE "W" AND PEEK F <> CODE

"(W]") OR (ABS (F-T) > VAL "10" AND PEEK M <>
CODE "B" AND PEEK M <> CODE "[b]") OR (PEEK F
< CODE "X" AND F<T) OR PEEK T <> CODE "B" THEN
GOTO 200

Letters in squares are inverse
characters obtained using GRAPHICS
mode •

270 POKE T, CODE "W" + CODE * (PEEK F >
CODE "W" OR (T-S) < VAL "9")

The graphic character in this
line is obtained in GRAPHICS
mode by pressing (Space)

280 POKE F, CODE "B" This is Graphics A
290 IF ABS (F-T) > VAL "10" THEN POKE M,

CODE "H"
300 PAUSE CODE "W"

You may find some difficulty in entering the long
lines, such as line 250, if you only have IK of
memory. A good hint is to enter (CLS) and (NEW
LINE). This does not effect the variables but
gives you more room on the screen to enter your
1 ine.

117

SAVE this program before trying to play draughts.

PLAYING DRAUGHTS:

As we mentioned at the beginning, if you only
have IK you cannot use (RUN) as this will clear
the variable so carefully saved. Use (GOTO 1)
instead. (Users with additional memory have the
string variable in the listing so can use (RUN).)

You should already have tested Program 2 by the
time you come to this point, so you already know
the display routine works and the computer
playing routine works.

The additions in Program 3 are the player's moves
and checking if these moves are allowed (This is
all in line 250: "F" is "from" and "T" is "to".
We check to see is the move from contains a White
piece, the move to is empty, any captured squares
do in fact contain a Black piece, and so on).

The input the computer is waiting for is a
4-character string, such as "A6B5". This means
that you mean to move from square A6 to square
B5.

As only the most rudimentary numbering has been
included in the screen, you may find it useful to
keep a properly numbered board by the computer
when playing.

The ZX81's response is extremely fast - almost
instantaneous as it is written in machine
language - so a short delay (line 300) has been
introduced to allow you to see the computer's
move being made. You can choose to play in either
FAST or SLOW mode.

118

If you should wish to play a second game, you
cannot simply use (GOTO 1) again, as the string
variable A$ has been deleted from memory. You
will need to either reload the program from
cassette or re-enter on the edit line the string
variable A$ as in line 120 (but without the line
number). You can use this to also enter different
set positions you wish to examine - eg. giving
the computer a head start, etc.

MACHINE LANGUAGE:

As mentioned in the beginning, the part of the
program which determines the computer's next move
is written in machine language.

We have already seen in the Line Renumbering
program and in Machine Code Editor program that
using machine language can result in an enormous
saving in memory.

This is the reason this part of the program was
written in machine language - the validation of
the player's move in the above program takes as
much room as the entire section dealing with the
computer's move: searching for best moves,
watching out for traps, making the moves,
converting to Kings if required, and so on.

Unfortunately it is beyond the scope of this book
to give an explanation of how this particular
machine language program works, or how to write
improvements for it.

Sil this information can be found in our book
"MACHINE LANGUAGE PROGRAMMING MADE SIMPLE". That
book also includes a full description of this
Draughts program. Price and ordering details are
at the back of this book.

119

0 = AF 50 = 40 100 = EB 150 = 42
21 23 E5 40
3C 10 ED El
40 DA 52 22
06 11 El 44
OA 3C 38 40
77 40 02 El
23 21 F6 22
10 43 80 40
FC 40 77 40

10 = 06 60 = 34 110 = C9 160 = C9
48 35 E5 3A
2A 01 19 3F
OC 04 7E 40
40 00 FE A7
E5 20 08 28
7E 02 20 D8
FE OE 12 El
A7 00 E5 El
28 D5 19 C9

20 = 12 70 = D5 120 = 7E 170 = 5E
FE El E6 23
27 09 7F 56
20 OE FE EB
IA 04 3C 174 = C9
11 ED 28
08 BO 22
00 CD El
CD 2C 22
Fl 41 3E

30 = 40 80 = 36 130 = 40
11 08 El
OA El 22
00 CD 3C
CD 2C 40
Fl 41 C9
40 7E E6
18 36 7F
OC 08 FE
11 13 3C

40 = F6 90 = EB 140 = 20
FF CD IA
CD 2C E5
Fl 41 19
40 DI 7E
11 01 FE
F8 3F 08
FF 00 20
CD EB 12
Fl 09 22

ZX81 ZX81

SINCLAIR

SOFTWARE
ZX81ZX81

MACHINE LANGUAGE
MADE SIMPLE

MACHINE LANGUAGE PROGRAMMING MADE SIMPLE :

This is the book you have been waiting for - the
one which will explain in simple and easy terms
exactly how to get more power out of the
computer. Go beyond BASIC into the world of
machine language programming and open computer
horizons you never thought possible!

MORE COMPUTING POWER

Now at last you can use the full potential of the
heart of the Sinclair ZX81 - the powerful Z80
microprocessor - by creating your own fast
machine language programs or subroutines.

Machine Language Made Simple is easy to use and
designed for the complete beginner: No other
knowledge of programming is required.

* Includes the machine code listing of the
Draughts game found in this book, commented and
explained, as well as other programs and
examples.

FASTER
RUNNING PROGRAMS!

Understanding
Your ZX81 ROM

INCLUDES SPECIAL SECTION: How to use machine code
routines in your BASIC programs.

Dr. Ian Logan was the first person to
dissassemble the ZX8O monitor and now he is the
first to explain exactly how the Sinclair ZX81
ROM does what it does.

Full details on the structure of the ROM are
given, including the way the Sinclair ZX81
handles the display, the cassette, and the
keyboard!

ROM addresses for all major ROM routines are
given. This makes it easy to write your own
specific programs using the ROM's routines.

This is an essential book for those who really
want to understand the full working of the
Sinclair ZX81.

ORDERING DETAILS:

ORDERS FOR PUBLICATIONS OF MELBOURNE HOUSE SHOULD
BE SENT TO :

MELBOURNE HOUSE PUBLISHERS
131 TRAFALGAR ROAD
GREENWICH LONDON SE1O

ENCLOSING A CHEQUE OR MONEY ORDER. A POST AND
PACKING CHARGE OF 80 PENCE SHOULD BE ADDED TO THE
COSTS OF THE BOOKS.

Any correspondance regarding any of these titles
should be addressed to Melbourne House
Publishers, Glebe Cottage, Station Road,
Cheddington, Leighton Buzzard, Beds. LU7 7NA.

Titles available:

THE COMPLETE ZX81 BASIC COURSE £17.50
BASIC Course Programs on Cassette £ 2.50
NOT ONLY 30 PROGRAMS FOR ZX81 IK £ 6.95
MACHINE LANGUAGE MADE SIMPLE (ZX81) £ 8.95
UNDERSTANDING YOUR ZX81 ROM £ 8.95

NOT ONLY
Battleships, Roulette,

Blackjack, Star Wars,

Breakout, Memory Left,
Mini Adventure,

1K Draughts...
and more all for the 1K ZX81

BUT ALSO
Each program explained

Programming hints

Space Saving techniques

PEEK and POKE explained

and much, much more!

Z
o
-H
O
Z
r“
-<
coo
■g
5J
O
0
zj >
=:
0
■i
0
ZJ
H
:t
rn
co
z
(0
r~
>
:5
N
í<
CO

Clf

	30 programs for the ZX81... 1K
	Orginal cover before restoration
	PUBLISHER'S NOTE
	INDEX
	INTRODUCING THE ZX 81 : 1K
	Patterns
	Leapfrogs
	Noughts and Crosses
	Pinch
	Battleships

	GAMBLING GAMES
	Craps
	Fruit Machine
	Roulette
	Horse Races
	Blackjack

	ZX 81 SHOWS THE WAY
	Day of the Week
	Simple Simon
	Kings and Queens
	Hangman
	Quadratic Equations
	Simultaneous Equations

	ARCADE GAMES
	Star Wars
	Lunar Lander
	Asteroids in Space
	Bombs Away
	U.F.O.
	Breakout
	Space Taxi

	ZX 81 UTILITY PROGRAMS
	Bubble Sort
	Line Renumbering
	Machine Code Editor

	CHALLENGING THE ZX 81
	Mastermind
	Doctor ZX 81
	Caves and Pitfalls
	Draughts

	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me ● 2020-07-28

